

Biodiversity Development Assessment Report (BDAR)

Black Hill Industrial Development, Black Hill

Prepared for

Barr Property & Planning c/- Broaden Management Pty Ltd

Final V4 / June 2021

0416 208 684 🛛 📋

matt.doherty@mjdenvironmental.com.au 🧧 🙆

PO Box 360 Waratah NSW 2298 🛛 🙍

MJDenvironmental.com.au 😡

DOCUMENT STATUS

Project Particulars	;		
Project Name	BDAR: Black Hill Ind	dustrial Development,	Black Hill
Job Number	17032		
Client	Barr Property & Pla	nning c/- Broaden Ma	nagement Pty Ltd
Status	Final		
Version	Date	Prepared by	Details
V1	19-7-2018	AC/MD	Draft for client review
V2	14-8-2018	AC/MD	Final for client submission
V3	21-06-2019	AC/MD	Final with Council requested information
V4	9-07-2021	CP/MD	Additional area update (John Renshaw Drive)

BOAMS STATUS

BOAMS	Finalised [9-7-2021]
BAM-C	Finalised [9-7-2021]
Accredited Assessor	Matt Doherty – Accreditation # BAAS17044

Approval for use:

Matt Doherty Accredited BAM Assessor # BAAS17044

Disclaimer

This document may only be used for the intended purpose for which it was commissioned by the client in accordance with the contract between MJD Environmental and client. This report has been prepared in response to an agreed scope and based on available data including that supplied by the client. It has been assumed that all supplied information is both accurate and current. This report, results and outcome are accurate at date of production and subject to change over time along with the legislative and policy framework under which it was prepared.

MJD Environmental Pty Limited will not be liable or responsible whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Unauthorised use of this report in any form whatsoever is prohibited.

⁹ July 2021

EXECUTIVE SUMMARY

MJD Environmental has been engaged by Barr Property & Planning on behalf of Broaden Management Pty Ltd, to prepare a Biodiversity Development Assessment Report (BDAR) for the construction and operation of the Black Hill Industrial Estate. The BDAR has been prepared and finalised as of June 2019 with additional areas assessed in response to matters raised during Land and Environment Court Proceedings in June 2021. It should be noted that this additional assessment has been included herein however the initial lodgement is still current and therefore no alterations to amended legislation which has occurred within the interim has been made. This BDAR accompanied an Environmental Impact Statement (EIS) seeking consent for the industrial development over part Lot 1131 DP 1057179, Black Hill Rd, Black Hill NSW and the adjoining 2 km length of road corridor along John Renshaw Drive being the subject of this review.

In addition, preliminary assessment was also undertaken having regard to those threatened entities listed under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act).

The Biodiversity Assessment Methodology 2017 (BAM) was used as the assessment method, as the current assessment method at the time of lodgement (it has subsequently been superseded by BAM 2020). BAM 2017 was used to establish impacts on threatened species and threatened ecological communities in the locality under the *Biodiversity Conservation Act* 2016.

The proposed development site was part of a planning proposal that received gateway on 11th December 2012 and a Draft LEP was received on 12th December 2016 with gazettal occurring on the 13th April 2017. The planning proposal assessed a land zoning change from RU2 Rural Landscape to IN1 General Industrial and E2 Environmental Conservation. This planning proposal sought to provide opportunity to develop the previously disturbed study area environs for an industrial development whilst conserving higher value native vegetation via appropriate environmental zoning.

The current conditions on site are evidence of the past land uses. The previous use as a commercial poultry farm is evident in large areas of cleared exotic pasture where sheds were once located. Currently the site is continuing to be grazed, limiting native vegetation to re-establish across the central area of the site. While the road corridor surveyed in 2021 is indicative of disturbed roadside vegetation, with some remnant woodland remaining and impacts from the abutting mine rehabilitation site to the north.

Field Assessments carried out as part of the biodiversity assessment identified the following Plant Community Types (PCT):

- 72.83 ha of varying condition PCT 1592: Spotted Gum Red Ironbark Grey Gum shrub grass open forest of the Lower Hunter which is commensurate with the listed Endangered Ecological Community Lower Hunter Spotted Gum Ironbark Forest of the Sydney Basin; and
- 0.78 ha of PCT 1584: White Mahogany Spotted Gum Grey Myrtle semi-mesic shrubby open forest of the central and lower Hunter Valley.

Targeted surveys for all flora and fauna candidate species recognised to have potential to occur within the subject site have been carried out by MJD Environmental (2018 & 2019) and have also utilised surveys undertaken by RPS (2017) as part of the works informing this BDAR. The additional roadside area was surveyed for suitable habitat for those species specified during June of 2021 to determine potential use.

The following threatened species were observed or recorded during survey works:

- Grey Crowned Babbler Pomatostomus temporalis temporalis (Ecosystem Credit Species)
- Grey-headed Flying Fox *Pteropus poliocephalus* was also observed flying over and foraging on blossom (Dual Credit species) no camp was observed on site; and
- Little Bentwing Bat (*Miniopterus australis*), Eastern Bentwing Bat (*Miniopterus schreibersii oceanensis*), both are dual Credit Species. The site was assessed as to have no maternity colonises present, so these species were accounted for as Ecosystem Credit Species.
- East-coast Freetail Bat (Mormopterus norfolkensis), Yellow-bellied Sheath-tailed Bat (Saccolaimus flaviventris) (Ecosystem Credit Species).

- Large-eared Pied Bat (*Chalinolobus dwyeri*) is a species Credit species, however detailed assessment has determined no breeding/ roosting habitat on site for this species;
- Masked Owl (*Tyto novaehollandiae*) (Dual Credit species), this species was not observed to be breeding in the subject site at the time survey thus has only been account for as an Ecosystem Credit Species.

Impact Avoidance & Mitigation

A package of avoidance and mitigation measures have been described in this BDAR associated with the project.

The subject site for development was selected due to the largely cleared or highly degraded lands as a result of past and present land use. All vegetation is to be removed within the subject site with the exception of the south to north reach of an ephemeral riparian corridor situated in the north-west of the site. The alignment will be subject to realigned in areas and rehabilitation as part of the staged development works. (Note: for the purposes of impact assessment, this vegetation has been considered as lost, thus adding to the overall biodiversity liability, notwithstanding that areas of the riparian corridor that are not realigned will be retained).

The current layout of the industrial area has been developed in response to the rezoning of the study area and no further avoidance and mitigation measures have been considered, as the approval granted at the time of rezoning considered the conservation outcomes for the site and the proposed land usage to be sufficient to allow for the rezoning to be approved

All measures have been incorporated into the design (avoidance) in the first instance with mitigation measures assessed for the construction and operational phases of the project.

Impact Analysis

The proposal will result in following impacts and required offsets as calculated using the BAM-C Calculator:

- 68.69 ha of PCT 1592 requiring 1,865 ecosystem credits; and
- 0.78 ha of PCT 1584 requiring 24 ecosystem credits to offset the loss under the NSW Biodiversity Offsets Scheme

There is no requirement to offset:

- 4.14 ha of PCT 1592 that was assessed to have a Vegetation Integrity score <15:</p>
- 105.24 ha of pasture; and
- 4,400m² of non-indigenous planting
- 3.17 ha of managed roadside vegetation

The development will be delivered in stages. It is proposed to stage the retirement of credits to achieve the required biodiversity credit liability, were the liability will be scheduled according the Staging and Clearing Plan. The total number of credits to be retired for each stage of the development shall be pro rata based on a credit / ha (of impact) calculation.

The current method to retire credits for the proposal has not been determined and will be dependent on the availability of credits on the open market, viability of establishing a stewardship site in the locality or retirement of credits via payment into the Biodiversity Conservation Fund. It is likely that credit retirement will incorporate a combination of these options as the development is delivered.

A preliminary assessment under the EPBC Act determined the proposed action is unlikely to have an impact to MNES based on the assessment criteria set out in relevant Commonwealth policies and advices as at the time of this assessment.

CONTENTS

1	Intro	oducti	on	1
	1.1	Des	cription of Proposal	1
	1.2	Aim	s & Objectives	1
	1.3	Site	Particulars	2
	1.4	Qua	lifications & Licencing	3
2	Lan	dscap	be Context	5
	2.1	Land	dscape Features	5
	2.1.	1	Interim Biogeographic Regionalisation of Australia (IBRA)	5
	2.1.	2	Mitchell Landscapes	5
	2.1.	3	Rivers, Streams, Estuaries and Wetlands	5
	2.1.	4	Connectivity	7
	2.1.	5	Areas of Geological significance and soil hazard features	7
	2.1.	6	Areas of Outstanding Biodiversity Value	7
	2.2	Site	Context	7
	2.2.	1	Native Vegetation Cover	7
	2.2.	2	Patch Size	8
3	Nat	ive Ve	egetation1	1
	3.1	Prel	iminary Vegetation Review1	1
	3.2	Meth	nodology: Field Assessment1	1
	3.2.	1	Field Survey1	1
4	3.3 Veg	Holle Jetatic	ow Bearing Tree Survey1 n Survey Results1	2 3
	4.1	Nati	ve Vegetation Extent1	3
	4.2	Veg	etation Description1	4
	4.3	Veg	etation Integrity Assessment2	3
	4.3.	1	Vegetation Zones2	3
	4.3.	2	Vegetation Integrity Assessment results2	6
5	Thre	eaten	ed Species Assessment2	9
	5.1	Des	ktop Assessment2	9
	5.2	Eco	system Credit Species2	9

	5.3	Sp	ecies Credit Species	30
	5.4	Ca	Indidate Species Surveys	55
	5.	.4.1	Targeted Species Survey Methodology	55
	5.	.4.2	Targeted Flora Survey	55
	5.	.4.3	Targeted Fauna Survey Methods	59
	5.	.4.4	Limitations	63
	5.	.4.5	Weather Conditions	64
6	Ta	argete	d Threatened Species Survey Results	66
	6.1	Flo	ora Species Results	66
	6.2	Но	Ilow Bearing Tree Survey	66
	63	Fa	una Species Results	66
7		latters	of National Environmental Significance	73
' 8	S	FPP 4	4 -Koala Habitat Protection	76
9	A	void a	nd Minimise Impacts	
	9.1	Bio	odiversity Values	78
	9.2	Pre	escribed Biodiversity Impacts	81
1()	Unav	oidable Impacts	82
	10.1	Dir	rect Impacts	82
	10.2	! Inc	direct Impacts	83
	10.3	B Pre	escribed Biodiversity Impacts	87
11	1	Impa	ct Mitigation and Minimisation Measures	91
12	2	Offse	et Requirements for Unavoidable Impacts	96
	12.1	Ec	osystem Credits	96
	12.2	2 Sp	ecies Credit	96
	12.3	B Are	eas not requiring Offsets	96
	12.4	Cre	edit Summary	97
	12.5	i Sta	aged Credit Retirement	97
13	3	Conc	lusion	99
14	1	Biblic	ography	101

LIST OF FIGURES

Figure 1 Site Map	4
Figure 2 Location Map	6
Figure 3 Native Vegetation Extent	9
Figure 4 Site Native Vegetation Extent	10
Figure 5 PCT and TEC Locations	22
Figure 6 Vegetation Zones	28
Figure 7 Targeted Flora Survey	58
Figure 8 Fauna Survey Location	65
Figure 9 Hollow Bearing Tree Survey	71
Figure 10 Fauna Survey Results	72
Figure 11 Development Footprint	80
Figure 12 Offset Requirements	

LIST OF TABLES

Table 1: Vegetation Integrity Results	26
Table 2 : Ecosystem Credit Species	
Table 3 Species Credit Species	
Table 4 Species Credit Species Habitat Assessment	
Table 5 Targeted Flora survey timeframes	
Table 6 Fauna Survey Effort (MJD 2018-19)	60
Table 7 Prevailing Weather Conditions	64
Table 8 Direct Impacts on Native Vegetation	82
Table 9 Potential Indirect Impacts	
Table 10 Mitigation Measures	91
Table 11 Ecosystem Credits	
Table 12 Biodiversity Liability Credit Summary	97

LIST OF PLATES

late 1: Plot Lay out (BAM Operational Manual 2018d)	.12
late 2: PCT 1592: Spotted Gum - Red Ironbark - Grey Gum shrub - grass open forest of the Lower Hunte	ər 14
late 2: PCT 1584: White Mahogany - Spotted Gum - Grey Myrtle semi-mesic shrubby open forest of the entral and lower Hunter Valley	16
late 3: Exotic Pasture	.18
late 4: Non-indigenous Planting	19

APPENDICES

Appendix A	Plan of Proposal
Appendix B	Staging and Clearing Plan and Staged Credit Retirement
Appendix C	BAM Plot Data
Appendix D	BAM Plot Sheets
Appendix E	BAM Calculator Credit Report
Appendix F	EPBC Likelihood of Occurrence Table
Appendix G	Personnel Qualifications
Appendix H	Detailed Project Description
Appendix I	Fauna Results (MJD Environmental 2017 &18)
Appendix J	RPS Survey Effort Plan & Threatened Fauna Plan (RPS 2017)
Appendix K	Anabat Report (EchoEcology)

GLOSSARY OF TERMS AND ABBREVIATIONS

Term/ Abbreviation	Meaning
BAM	Biodiversity Assessment Method 2017
BDAR	Biodiversity Development Assessment Report
BC Act	Biodiversity Conservation Act 2016
BS Act	Biosecurity Act 2016
Council	Cessnock City Council
DoEE	Commonwealth Department of the Environment & Energy
DPE	NSW Department of Planning and Environment
DPI Water	NSW Department of Primary Industries – Water
EP&A Act	NSW Environmental Planning and Assessment Act 1979
EPBC Act	Commonwealth Environment Protection and Biodiversity Conservation Act 1999
ha	hectare
LGA	Local Government Area
LLS Act	Local Land Services Act
NV Act	Native Vegetation Act 1995 (Repealed)
OEH	NSW Office of Environment and Heritage
TSC Act	NSW Threatened Species Conservation Act 1995 (Repealed)

1 Introduction

Management Pty Ltd, to prepare a Biodiversity Development Assessment Report (BDAR) to accompany an Environmental Impact Statement (EIS), seeking consent for an industrial development over part of Lot 1131 DP 1057179, as well as the adjoining road corridor, Black Hill Rd, Black Hill NSW, hereafter referred to as the 'subject site' (**Figure 1**).

1.1 Description of Proposal

The proposed development seeks consent for the subdivision of Part Lot 1131 in Deposited Plan 1057179 to create 39 large industrial lots, as shown on the subdivision plan (Refer to **Appendix A**). Additionally, the proposal includes the remediation of the site to ensure that site is suitable for future occupation for industrial use.

This proposal constitutes stage 2 of a concept development application submitted to Cessnock City Council, pursuant to s.22 of the Environmental Planning and Assessment Act 1979 (refer to section 6.6.1). This stage of the concept development application includes:

- Creation of two signalised intersections to provide suitable access to the subdivision;
- The realignment of the existing watercourse that traverse the western portion of the site;
- Civil earthworks to provide a suitable foundation for future industrial development;
- Extension, augmentation and/ or adaptation of essential services (i.e. water, sewer & telecommunications) to cater for the future tenants of the industrial development;
- Construction of a 132/11kV substation and the relocation of the existing aboveground 132kV high voltage transmission line;
- Remediation of the site to ensure suitable occupation for industrial use;
- Subdivision of Part of Lot 1131 in Deposited Plan 1057179 to create 39- industrial lots and 1 environmental conservation lot; to be delivered in six stages;
- Construction of the ring-road network to provide suitable access to all proposed industrial lots, and
- Infrastructure to capture, detain and treat all stormwater collected on site.
- Road widening of existing road corridor to accommodate a possible dual carriageway

Refer to **Figure 2** for a Site Map and **Appendix A** for a plan of the proposal. **Appendix H** contains a detailed description of the proposal.

1.2 Aims & Objectives

The proposed Black Hill Industrial Development is a designated development under Part 4 of the *Environmental Planning and Assessment Act 1979*.

This Biodiversity Development Assessment Report has been prepared as part of an Environmental Impact Statement (EIS) for the designated development and addresses the Secretary's Environmental Assessment Requirements (SEARs) issued on 28 May 2018.

This BDAR is based on an application of the NSW Biodiversity Assessment Methodology 2017 (BAM), which provides a framework for assessing the developments impact on biodiversity. A twostage investigation path was performed in accordance with the BAM as listed below:

Stage 1 - Biodiversity Assessment; and

Stage 2 – Impact Assessment.

This report sets out the minimum BAM assessment requirements of the preparation of a BDAR in Appendix 10 of the BAM (2017).

In addition, preliminary assessment was also undertaken having regard to those threatened entities listed under the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act).

1.3 Site Particulars

The following nomenclature has been used in this report (Refer to Figure 1):

- Study Area- Refers to the wider lands assessed as part of the proposal and previous studies
- Subject site Refers to the development area within the Study Area (Part Lot 1131 DP 1057179). This area includes all matters that form the proposal including construction area, operational area, road widening and servicing.

Locality	The site is located in Black Hill
Land Title	Part Lot 1131 DP 1057179
LGA	Cessnock City Council with an approximate 1.09 ha falling within the Newcastle City Council LGA
Area	The study area is approx. 216.5 ha comprised of the Subject site 184.41 ha (approx.) and northern E2 Environmental Conservation zoned parcel 57.6 ha (approx.).
Zoning	The site is currently zoned IN2 Light Industrial (NSW Planning & Environment 2018).
Boundaries	The site is bound by frontage to E2 Environmental Conservation zone land followed by John Renshaw Dr. To the immediate south, the site is bound by E4 Environmental Living zone land followed by Black Hill Rd. E4 Private parcels of land categorised as Environmental Living zone land bound the site to the west and IN2 Light Industrial zone lands to the east, with a 330 kV electricity line and associated easement running parallel to the eastern edge
Current Land Use	The entire site comprises remnants of an old chicken farm, containing at least 15 individual family farms, each with its own chicken sheds and house dwellings. These former farms and residences within the site have been demolished and the land is now vacant. The site is currently being used to support grazing beef cattle. The subject site is also inclusive of an approximately 2.08 km stretch of John Renshaw Drive which is contains areas of slashed road verge.
Topography	The highest point on the site is approximately 50 m AHD in the extreme southern and south-eastern portion. The lowest point of elevation throughout the site is in the extreme north in relation with Weakleys Flat Creek at an elevation of approximately 20 m AHD. The dominant drainage lines within the site lie in the north-east and consist of two major creeklines separated by a ridgeline, which is also oriented towards the north-east.
Locality	Black Hill

1.4 Qualifications & Licencing

Qualifications

This BDAR has been prepared by Matt Doherty (BAAS #17044) and Adam Cavallaro (BAAS# 18056) accredited BAM Assessors. 2021 updates have been prepared by Coral Pearce [B. A. Sc. (Ecology), M. Sc] under the guidance of Matt Doherty.

Field Work for the BDAR was carried out by Adam Cavallaro, Bret Stewart, Phoebe Smith and Matt Doherty of MJD Environmental Pty Ltd. Field work conducted as part of the 2021 updates were conducted by Chris Spraggon and Coral Pearce of MJD Environmental.

Refer to Appendix G for personnel qualifications.

Licencing

Research was conducted under the following licences:

- NSW National Parks and Wildlife Service Scientific Investigation Licence SL101684 (Valid 30 November 2021).
- Animal Research Authority (Trim File No: 16/170) issued by NSW Department of Primary Industries (Valid 8 February 2022).
- Animal Care and Ethics Committee Certificate of Approval (Trim File No: 16/170) issued by NSW Department of Primary Industries (Valid 8 February 2022).

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL **FIGURE 1: SITE MAP**

Legend

- Watercourse

Subject Site

Cadastral Boundaries

250

125

500

Meters

1:7,500

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 1 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

STAGE 1 BIODIVERSITY ASSESSMENT

2 Landscape Context

2.1 Landscape Features

The following section provides a description of the landscape features within the site and surrounding 1,500m buffer as outlined in Section 4 of the BAM (2017)

2.1.1 Interim Biogeographic Regionalisation of Australia (IBRA)

Bioregion

The subject site occurs wholly within the Sydney Basin Bioregion. The Sydney Basin Bioregion comprises of Mesozoic sandstones and shales; dissected plateaus: forest, woodlands and heaths: The soils are primarily skeletal soils, sands and podzolics (Thackway & Cresswell 1995). This Bioregion borders NSW North Coast to east: Nandewar and Brigalow Belt South to the north and the South Eastern Highlands in the south.

Subregion

The Study Area occurs wholly within the Hunter subregion.

2.1.2 Mitchell Landscapes

The Study Area occurs wholly within the Sydney Basin Hunter *Newcastle Coastal Ramp* Mitchell Landscape.

The Newcastle Coastal Ramp Mitchell Landscape occurs as undulating lowlands and low to steep hills on complex patterns of faulted and gently folded Carboniferous conglomerate, lithic sandstone, felspathic sandstone, and mudstone, general elevation 50 to 275m, local relief 40 to 150m. Stony red texture-contrast soils on steep slopes, yellow and brown texture-contrast soils on lower slopes and deep dark clay loams along streams.

Woodland of spotted gum (*Corymbia maculata*), forest red gum (*Eucalyptus tereticornis*), Red ironbark (*Eucalyptus sideroxylon*), white mahogany (*Eucalyptus acmenoides*), large-fruited grey gum (*Eucalyptus canaliculata*), with sub-tropical rainforest elements in sheltered gullies. Similar Eucalypts with Forest Oak (*Allocasuarina torulosa*) and grasses on lower slopes, merging to forest of Smooth-Barked Apple (*Angophora costata*), Red Bloodwood (*Corymbia gummifera*), Blackbutt (*Eucalyptus pilularis*) with Bracken (*Pteridium esculentum*) and grasses nearer the coasts (Mitchell 2002).

2.1.3 Rivers, Streams, Estuaries and Wetlands

The site is located within the Hunter River catchment in the Hunter region. The Site is located 5.74km west of the Hunter River and 10.5km south of the Paterson River.

The hydrology of subject site is typified by a single ephemeral first order stream running in a south to north direction in the western section of the site. The larger study area in which the site is located, includes additional ephemeral first order streams and a second order stream situated in the vegetation to be retained in the north which extends into the road corridor, bisecting the additional 2021 survey area. A third order water runs parallel to the southern boundary within vegetation to be retained.

The site is located approximately 2.7km west of the RAMSAR list wetlands Hexham Swamp and Pambalong Swamp. Both these areas are mapped as Coastal Wetlands under the Coastal Management SEPP.

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL FIGURE 2: LOCATION

Legend

-	
\bigcirc	Culvert

- 1st Order Stream
- 2nd Order Stream
- ----- 3rd Order Stream
- Subject Site
- <u>Study</u> Area
 - Cadastral Boundaries
- ___ 1500m Buffer
 - National Parks Estate

345

690

1,380

Meters

1:21,000

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 1 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

2.1.4 Connectivity

The wider study area in which the subject site is currently located, facilitates habitat connectivity primarily in the form of dry sclerophyll forest that borders riparian corridors. The subject site consists of patchy vegetation (centrally) with dense areas to the north and south of the subject site. Currently the subject site provides connectivity to large areas of vegetation to the east and west. The study area is bordered to the east by a linear electricity easement that lacks canopy vegetation, just east of this easement (approximately 60 m) is a larger contiguous patch of vegetation that is persistent to the M1 Motorway that severs any further connectivity to the east, for predominantly ground dependent fauna species. Connectivity to the north of the subject site is restricted to highly mobile fauna species due to the major arterially road John Renshaw Drive dissecting the study area from vegetation in the neighbouring Donaldson Coal landholdings. The west of the study area is connected to a large tract of land that stretches west and has further connection in the south and south-west to the northern extent of the Sugarloaf range.

Vegetation is generally contiguous based on canopy cover. The network of vegetation patches allows for movement across the subject site in a north-south and east-west direction. The patchy nature of the subject site is evident of historic land clearing in the area, that currently supports the movement of highly mobile fauna species.

The land to the east has been approved for a large employment lands development as part of the Coal & Allied Lower Hunter Lands – Black Hill site project (Major Project ref: MP10_0093). When developed, connectivity to the east of site will be severed. The neighbouring concept approval seeks to maintain a central north to south connection via a retained riparian zone. Continued east to west connectivity shall occur south of site within the study area to the neighbouring concept approval site.

2.1.5 Areas of Geological significance and soil hazard features

No karsts, caves, crevices or cliffs or other areas of geological significance occur in or adjacent to the subject site.

Soil hazards such as contaminated land has been assessed as part of the Environmental Impact Statement (EIS). Please refer to the Contaminated lands report provided as an appendix to the EIS.

A review of the Acid Sulphate Soils Risk mapping (Naylor et al 1998) records indicate the site has not been assessed for ASS.

2.1.6 Areas of Outstanding Biodiversity Value

There are no Areas of Outstanding Biodiversity Values within the 1,500m buffer or in the general locality of the site.

2.2 Site Context

The site context was assessed for the subject site and wider study area via desktop assessment of previous ecological studies carried out on the subject site, Aerial Photograph Interpretation (API) using GIS Software and initial high-level site visit. Site context considerations included native woody cover and patch size in accordance with section 4.3 of the BAM (2017)

2.2.1 Native Vegetation Cover

The native vegetation cover of the subject site and 1,500m buffer was carried out by API of high quality aerial photography using GIS Software (Map Info), and local vegetation mapping data *Lower Hunter Vegetation Mapping* (Cockerill *et al* 2013) and the *Greater Hunter Valley Mapping* data set (Somerville 2009)

Native vegetation cover has been assessed as >30-70% or 67 %.

Refer to Figure 3 and Figure 4.

2.2.2 Patch Size

A patch is defined in the BAM as:

an area of intact native vegetation that occurs on the subject site. The patch may extend onto adjoining land beyond the footprint of the subject site, and for woody ecosystems, includes native vegetation separated by \leq 100 metres from the next area of intact native vegetation. For non-woody vegetation, this gap is reduced to \leq 30 metres.

Patch size for the site has been assessed using the methods outlined above in Section 3.2.1 and it has been determine that the patch size is greater than 100ha.

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL FIGURE 3: NATIVE VEGETATION EXTENT

Legend

- O Culvert
- Corridor
- 1st Order Stream
- 2nd Order Stream
- ----- 3rd Order Stream
- Subject Site
- <u>.</u> Study Area
 - Cadastral Boundaries
- _ 1500m Buffer
- Native Vegetation
 - National Parks Estate

690

345

1,380

Meters

1:21,000

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 1 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL FIGURE 4: SITE NATIVE **VEGETATION EXTENT**

- - Cadastral Boundaries
 - Native Vegetation

125

250

500

Meters

1:7,500

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 1 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

3 Native Vegetation

3.1 **Preliminary Vegetation Review**

A desktop analysis of vegetation within the study area, site and its surrounds were informed by largescale vegetation mapping projects and aerial photography to determine potential Plant Community Types (PCT) occurring on site, they include:

- Lower Hunter Vegetation Mapping (Cockerill et al 2013)
- Hunter, Central & Lower North Coast Vegetation Mapping Classification and Mapping Project (Somerville 2009);
- Greater Hunter Native Vegetation Mapping Geodatabase Guide V4.0 (Sivertsen et al. 2011;
- RPS (2011). Ecological Assessment Report Lower Hunter Lands: Black Hill. Report prepared for Coal & Allied Industries (for Major Project MP10_0093)
- GIS analysis including Aerial Photograph Interpretation (API) and consultation of topographic map (Scale 1:25,000) layers for the site; and
- OEH VIS Classification Database

In addition, a review of ecological information associated with previous ecological investigations carried out within the Study Area was undertaken this includes:

- RPS Group (2017a) Biodiversity Assessment Report: Black Hill Industrial Development. RPS Group, Broadmeadow, NSW
- RPS Group (2017b) Black Hill Industrial Development: Biodiversity Inventory Report, RPS Group, Broadmeadow, NSW

3.2 Methodology: Field Assessment

All vegetation survey methods have been carried in accordance with the following documentation and methods:

- Biodiversity Assessment Methodology (BAM): Office of Environment and Heritage (OEH), August 2017;
- Biodiversity Assessment Method Operational Manual- Stage 1 Office of Environment and Heritage (OEH), May 2018; and
- NSW Guide to Surveying Threatened Plants Office of Environment and Heritage (OEH), February 2016

3.2.1 Field Survey

Field assessments of vegetation were carried out within the subject site on 20, 21,22, 26, 27 June and 3 July 2018 by Adam Cavallaro and Phoebe Smith, with additional field assessment conducted on 9 June 2021 by Coral Pearce and Chris Spraggon. The field surveys were carried out in accordance with Biodiversity Assessment Methodology (BAM 2017) with additional assessment methods to assist in gaining an overview of site biodiversity values.

The following methods were used to inform the vegetation survey associated with the BDAR:

- Broad vegetation identification, delineation and stratification into vegetation zones carried out by detailed random meander methods (Cropper 1993);
- Collection of plot/transect based full floristic data as per Section 5 of the BAM, recording the following;
 - o Identification of all flora species to genus where identification attributes were present
 - o Composition, Structure attributes within 20x20m (400m²) plot; and

- o function attributes within the 20X50m (1,000m²) plot
- Collection of site landscape attributes that included, landform, aspect, soil type, detailed descriptions of the vegetation condition, current land use and the impacts currently observed on site.

	1		
: Vegetatio	on survey plot - 20r	n x 50m	
vegetatio	on survey plot - 201	n x pun	

Plate 1: Plot Lay out (BAM Operational Manual 2018d)

3.3 Hollow Bearing Tree Survey

A hollow bearing tree survey was undertaken (Feb – Mar 2019 and June 2021) across the subject site with the following information collected:

- Location (D-GPS);
- Tree species;
- Tree DBH;
- Presences of hollows (including potential hollows) and class;
- Habitat suitability for large Forest Owls; and
- Any observational information.

4 Vegetation Survey Results

4.1 Native Vegetation Extent

The subject site is 184.41 ha in size which includes 73.6 ha of native vegetation and 108.85 ha of cleared land (exotic pasture and tracks), non-indigenous native plantings and managed roadside vegetation. The extent of native vegetation has been interpreted using API and ground truthing during field survey works. (Refer to **Figure 5**).

The vegetation within the subject site has been modified by current and past land uses. Historically the site was used for a commercial poultry farm site, in which many of the cleared areas were once the location of large chicken sheds. Since the decommissioning of the poultry farm, the site has been used for grazing which was evident during the field surveys. The current land use has resulted in the modification of the structure of native vegetation on site to a point that vegetation representative of assigned Plant Community Types is defined generally by canopy and groundcover species. The ground throughout the site is often compacted due to bovines traversing the site and high levels of manure throughout.

The proposed road widening will occur primarily within the existing road corridor containing managed roadside vegetation and remnant native vegetation. The remnant vegetation is currently impacted by edge effects due to the extant road and mine rehabilitation site and works to the north. The managed roadside vegetation contains a high level of exotic grasses with Coolatai grass (*Hyparrhenia hirta*), a HTE dominating. Woody species such as *Lantana camara* and *Acacia* species found throughout.

Identification of PCTs within the subject site were determined using:

- Occurrence within the Sydney IBRA bio-region;
- Vegetation formation and class:
- landscape position; and
- dominant species noted during field data collected from the full floristic plots/transects established in accordance.

Two PCTs were identified within the Subject site:

- PCT 1592: Spotted Gum Red Ironbark Grey Gum shrub grass open forest of the Lower Hunter, and
- **PCT 1584**: White Mahogany Spotted Gum Grey Myrtle semi-mesic shrubby open forest of the central and lower Hunter Valley

In addition, areas identified not to align with PCTs include Cleared land and Non-indigenous plantings.

4.2 Vegetation Description

PCT 1592: Spotted Gum - Red Ironbark - Grey Gum shrub - grass open forest of the Lower Hunter

Plate 2: PCT 1592: Spotted Gum - Red Ironbark - Grey Gum shrub - grass open forest of the Lower Hunter

Vegetation Formation	KF_CH5A Dry Sclerophyll Forests (Shrub/grass sub-formation)
Vegetation Class	Hunter-Macleay Dry Sclerophyll Forest
Area	72.83 ha
Vegetation Zone:	Vegetation Zone VZ1:1592_High
	Vegetation Zone VZ2:1592_Moderate
	Vegetation Zone VZ3:1592_Low Grassland
	Vegetation Zone VZ4:1592_Low
	Vegetation Zone VZ5: 1592_Low Scattered Trees
Description	The Spotted Gum - Red Ironbark – Grey Gum Shrub -Grass open forest of the Lower Hunter is the dominant plant community observed across the subject site.
	The canopy is dominated by <i>Corymbia maculata, and Eucalyptus fibrosa</i> with various sub-dominant or infrequently occurring canopy species observed pending location and proximity to adjacent plant community type within the landscape. The northern section of the site has a distinct difference in sub-dominant species where species such as <i>Angophora costata, Corymbia gummifera</i> were observed to be scattered throughout. The central areas are primarily consisting of the dominant two species of the community, with occurrences of <i>Eucalyptus punctata, E. paniculata</i>

and *E. acmenoides*. The occurrence of this community along the southern boundary of the subject site has a very sparse occurrences of *E. moluccana*.

A very narrow band of *E. tereticornis* also occurs scattered amongst the *C. maculata* and *E. fibrosa.*

The mid-storey and shrub layer is generally sparse across the entire site (due to historic and current land uses) with small patches in which a low diversity of mid-storey and shrub species have persisted. Species observed included *Allocasuarina torulosa, Bursaria spinosa, Daviesia ulicifolia, Breynia oblongifolia, Persoonia linearis* and *Pultenaea spinosa.*

The groundcover diversity was dependent on current grazing practices occurring on site, in general the site has a high diversity of groundcover composition, with primarily native grassy and herbaceus species. The groundcover species commonly observed throughout the subject site consisted of *Themeda triandra*, *Aristida vagans*, *Microlaena stipoides*, *Pratia purpurascens*, *Entolasia stricta Brunoniella australis*. Less common species observed but not limited include *Lepidosperma laterale*, *Lomandra filiformis* subsp. *filiformis*, *Glycine clandestina Oplismenus imbecilis*.

There are a number of exotic species spread throughout that include *Lantana camara,* and a number of pasture and peri-urban exotic species such as *Ehrharta erecta, Cenchrus clandestinus, Sporobolus africanus, Senecio madagascariensis* and *Axonopus fissifolius.*

Species relied upon for Id of vegetation type Corymbia maculata, Eucalyptus fibrosa, Eucalyptus punctata, Daviesia ulicifolia, Bursaria spinosa, Themeda triandra, Microlaena stipoides and Aristida vagans

ThreatenedPCT 1592 is commensurate with Lower Hunter Spotted Gum IronbarkEcologicalForest in the Sydney Basin Bioregion which is listed as an EndangeredCommunityEcological Community under the Biodiversity Conservation Act 2016

%cleared of PCT

Justification The PCT assignment of 1592 to the vegetation within the subject site is

44% cleared (Bionet 2018)

based on the follow key attributes:

of assigning PCT

 Key diagnostic species within the canopy are present within remnant vegetation observed on site. The midstorey is often lacking but where it still persists key species are present: the groundcover does also present with all key diagnostic species.

 The site is located predominantly within the Beresfield soil landscape with northern sections located with the Shamrock Hill soil landscape. Both of these landscapes have an association with the lithology noted in the PCT description.

• The site is within the Lower Hunter and is located within flats in the landscape.

PCT 1584: White Mahogany - Spotted Gum - Grey Myrtle semi-mesic shrubby open forest of the central and lower Hunter Valley

Plate 2: PCT 1584: White Mahogany - Spotted Gum - Grey Myrtle semi-mesic shrubby open forest of the central and lower Hunter Valley

Vegetation Formation	KF_CH2A Wet Sclerophyll Forests (Grassy sub-formation)
Vegetation Class	Northern Hinterland Wet Sclerophyll Forest
Area	0.78ha
Vegetation Zone:	Vegetation Zone VZ6: 1584_High
Description	The White Mahogany - Spotted Gum - Grey Myrtle semi-mesic shrubby open forest of the central and lower Hunter Valley is located within a small section of the development site adjacent to the second order stream that dissects the proposed north-western entrance road.
	The canopy has a mixed canopy species with <i>Corymbia maculata, Eucalyptus acmenoides</i> and <i>Eucalyptus paniculata</i> being the dominant species. There are a small number of infrequently occurring canopy species that include <i>Eucalyptus punctata</i> and sub-canopy species <i>Melaleuca stypheloides</i> .
	The native mid-storey and shrub layer is sparse (due to historic and current land uses), and there is dominance of the high threat weed <i>Lantana camara</i> . There is a low diversity of mid-storey and shrub species that have persisted. Species observed included <i>Bursaria spinosa, Breynia oblongifolia, Notelaea longifolia, Pittosporum revolutum</i> and <i>Denhamia silvestris</i> .
	The groundcover diversity is generally high with the groundcover composition primarily native grassy and herbaceus species. The groundcover species commonly observed throughout the subject site consisted of <i>Microlaena stipoides</i> , <i>Pratia purpurascens, Oplismenus aemulus, Entolasia stricta</i> and <i>Brunoniella australis.</i> Less common species observed but not limited include <i>Lomandra</i>

filiformis subsp. filiformis, Tylophora barbata, Glycine clandestina and Dichondra repens.

There are a number of exotic species spread throughout that include *Lantana camara*, and a number of pasture and peri-urban exotic species such as *Ehrharta erecta*, *Senecio madagascariensis* and *Axonopus fissifolius*.

Threatened Ecological Community	Does not form part of a TEC.
%cleared of PCT	42% cleared (Bionet 2018)
Species relied upon for Identification of vegetation type	Corymbia maculata, Eucalyptus acmenoides, Notelaea longifolia, Breynia oblongifolia, Microlaena stipoides, Plectranthus parviflorus
Justification of assigning PCT	The PCT assignment of 1584 to the vegetation within the subject site is based on the follow key attributes:
	 Of the 18 key diagnostic species a total of 11 species were positively identified (61%)
	 The site is located predominantly within the Shamrock Hill soil landscape. This landscape is part of the Permian Tomago coal measure that includes lithology mudstone, sandstone listed for this PCT;
	The state is within the Lewis Human such the Lewis sector is within its which the

 The site is within the Lower Hunter and the landscape position in which this vegetation occurs is within a gully and lower slopes.

Exotic Pasture

Plate 3: Exotic Pasture

Vegetation Formation	N/A
Vegetation Class	N/A
Area	105.24ha
Vegetation Zone:	All land classified as non- native vegetation
Description	The remaining land that does not constitute native vegetation has been assessed as exotic pasture. These areas are open paddocks, areas of disturbed batters and tracks. that are dominated by exotic pasture grasses and high threat weed species. <i>Cynodon dactylon</i> Couch grass is present and although recognised as a native this species is growing in areas that have obvious signs of pasture improvement and is currently behaving in a similar manner as other exotic species Exotic and high threat weed species observed throughout these areas include <i>Lantana camara, Cenchrus clandestinus, Andropogon virginicus, Sporobolus</i> <i>africanus Senecio madagascariensis</i> and a number of pasture and peri-urban exotic species such as <i>Ehrbarta erecta</i> and <i>Avonopus fissifolius</i>

Non-indigenous Planting

Plate 4: Non-indigenous Planting

Vegetation Formation	N/A
Vegetation Class	N/A
Area	4,400m ²
Vegetation Zone:	Linear non-indigenous planting areas
Description	There are a number of non-indigenous plantings located within the subject site that are located adjacent on sites that previously housed infrastructure. Species found in the plantings are found in the locality but are not associated with the plant community types observed on site. Species include <i>Casuarina glauca, Eucalyptus</i> <i>robusta</i> planted in linear rows along disused driveways and where dwellings once previously stood. Vegetation beneath the planting resembles exotic pasture of VZ5. <i>Cynodon dactylon</i> Couch grass is present and although recognised as a native this species is growing in areas that have obvious signs of pasture improvement and is currently behaving in a similar manner as other weed species. There are a number of exotic species spread throughout that include <i>Lantana</i> <i>camara, Cenchrus clandestinus, Andropogon virginicus, Sporobolus africanus</i> <i>Senecio madagascariensis</i> .

Road Corridor maintained/disturbed vegetation

Plate 5: Managed roadside vegetation

Vegetation Formation	N/A
Vegetation Class	N/A
Area	3.17 ha
Vegetation Zone:	Linear non-indigenous and native grasses and regenerating woody pioneer species
Description	The road corridor to the south of John Renshaw Dr has been managed by TfNSW through regular slashing and the initial clearance required to ensure road safety requires are met. This area extends up to 7 m from the road edge lines and is dominated by exotic grass species. Most notably the HTE Coolatai grass (<i>Hyparrhenia hirta</i>). The species is common and widespread within the region becoming localised within distance from the coast. Other grasses recorded commonly within the road corridor were <i>Eragrostis curvula</i> , <i>Lolium perenne</i> , <i>Melinis repens</i> , <i>Elymus repens</i> , and <i>Briza minor</i> as well as number of exotic forbs

such as Senecio madagascariensis. Verbena bonariensis, and Hypochaeris glabra.

Some regenerating acacia species (*Acacia falcata* and *Acacia elongate*) as well as native shrub species *Breynia oblongifolia* were recorded within the road corridor which are under active management from TfNSW. In addition, woody exotic species such as *Lantana camara*, *Senna pendula*, *Solanum mauritianum* and *Gomphocarpus fruticosus* were noted within the road corridor. Endemic grasses and forbs were also present within the road corridor such as *Cheilanthes distans*, *Epilobium hirtigerum*, *Cymbopogon refractus*, *Hydrocotyle sibthorpioides*, and *Entolasia marginate*.

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL FIGURE 5: PCT AND TEC LOCATIONS

Legend

- BAM Plot
- Watercourse
- Subject Site
- - Cadastral Boundaries
- Threatened Ecological Community

Plant Community Types

- 1592: Spotted Gum Red Ironbark
 Grey Gum shrub grass open forest
- 1584: White Mahogany Spotted Gum - Grey Myrtle semi-mesic shrubby open forest
- Managed Roadside Vegetation

Planting

125

500

Meters

250

1:7,500

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 1 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

4.3 Vegetation Integrity Assessment

The vegetation within nominated PCTs have be delineated into broad vegetation zones based on the general condition of vegetation. observation of distinct change or variation in the vegetation based on general attributes such as vegetation age, observable disturbance (past and present), exotic species presences and the any structural difference in the stratum present were used to delineate vegetation into zones.

The site has been delineated into six vegetation zones:

- PCT 1592: five vegetation zones; and
- PCT 1584: one vegetation zone

The following table provides a brief description of each vegetation zone justifying separation into vegetation zones.

A total of 24 full floristic plots/transects were conducted within the six zones. The number of plots carried out are in accordance with the minimum required plots per area as outlined in **Table 1** of the BAM (2017).

4.3.1 Vegetation Zones

Vegetation Zone: VZ1_1592_High				
PCT 1592: Spotte	ed Gum - Red Ironbark - Grey Gum s	hrub - grass open for	est of the Lower Hunter	
Zone Area (ha)	22.13	Survey Effort	8 Quadrats	
The vegetation assigned to VZ1 -1592_high is generally observed to have a higher quality variant of the PCT. Vegetation generally had a species richness above 35, a mid-storey present with four or more species and a high threat weed cover of less than 10%. The vegetation was observed to have a predominantly native groupdcover and native species represented in all three stratum and all growth forms.				

Vegetation Zone: VZ2_1592_Moderate					
PCT 1592: Spotted Gum - Red Ironbark - Grey Gum shrub - grass open forest of the Lower Hunter					
Zone Area (ha)	Zone Area (ha) 29.04 Survey Effort 6 Quadrats				
The vegetation assigned to VZ2 -1592_moderate was observed to have a predominantly native groundcover and a generally absent native midstorey. Native species richness was observed to be moderate with an average 20-30 species observed. Weed presents was also moderate with an average high treat wee cover of 10-25%. There were significant signs of grazing throughout these areas.					

Vegetation Zone: VZ3_1592_Low Grassland			
PCT 1592: Spotte	d Gum - Red Ironbark - Grey Gum s	hrub - grass open for	est of the Lower Hunter
Zone Area (ha)	2.64	Survey Effort	2 Quadrats
The vegetation assigned to VZ3 -1592_Grassland, was a small area in the west of the site where there is a distinct lack of canopy a mid-storey species present, but had a high native groundcover. The vegetation lacked logs, trees and hollows possible due to previous land uses as a thoroughfare.			

Vegetation Zone: VZ4_1592_Low

PCT 1592: Spotted Gum - Red Ironbark - Grey Gum shrub - grass open forest of the Lower Hunter			
Zone Area (ha)	17.53	Survey Effort	5 Quadrats

The vegetation assigned to VZ4 -1592_Low was generally observed to have a low condition due to the high occurrences of exotic and high threat weed species presences.

The vegetation has an intact canopy with a low density of large trees and a distinct lack of hollows. The mid storey is generally absent with the exception of the occasional patch of *Lantana camara*, which was observed to provide some protection for re-establishing native mid storey (very sparse).

The groundcover is predominantly exotic grassy and herbaceous species with native species persisting in smaller numbers.

Vegetation Zone: VZ5_1592_Low Scattered trees

PCT 1592: Spotted Gum - Red Ironbark - Grey Gum shrub - grass open forest of the Lower Hunter			
Zone Area (ha)	1.50	Survey Effort	1 Quadrats

The vegetation assigned to VZ5 -1592_Low Scattered Trees describes areas that are small isolated patches of native trees that do not align with the criteria for paddock trees. These patches of trees have been separated from other areas due to the predominantly exotic groundcover, lack of native midstorey. The groundcover consists of exotic pasture with the occasional native grass persisting. The trees are native and are diagnostic species for the PCT nominated. Although this vegetation zone is aligned with the PCT the condition of the vegetation would not constitute the nominated TEC for this PCT. This VZ also occurs within the road corridor of John Renshaw Drive.

Vegetation Zone: VZ6_1584_High				
PCT 1584: White central and lowe	e Mahogany - Spotted Gum - Gre r Hunter Valley	y Myrtle semi-mesic	shrubby open forest of the	
Zone Area (ha)	one Area 0.78 Survey Effort 1 Quadrats			
The vegetation a primarily within t	assigned to VZ7 -1584_high is loc he riparian corridor.	cated within the north	hern section of the site	

4.3.2 Vegetation Integrity Assessment results

A total of 202 plant species were identified within the 24 plots comprising 171 native species and 31 exotic species. The results of the plot field data and a flora species list can be found in **Appendix C** and **Appendix D**.

The plot data from the vegetation plots were entered into the BAM calculator and the results of the vegetation integrity assessment are summarised in **Table 1** for the vegetation zones that are impacted.

Vegetation Zone	No. of Plots	Composition condition Score	Structure Condition Score	Function Condition score	Vegetation Integrity Score (V.I)
VZ1_1592_High	9	84.9	56.6	63.4	67.3
VZ2_1592_Moderate	6	67.4	42.3	43.1	49.7
VZ3_1592_Low Grassland	5	50.6	37	1.8	14.9
VZ4_1592 Low	2	43.6	42.4	50.6	45.4
VZ5_1592_Low_Scattered Trees	1	6.3	26	12.4	12.7
VZ6_1584_High	1	79.7	88.7	79.1	82.4

Table 1: Vegetation Integrity Results

- As outlined in section 10.3.1 of the BAM biodiversity offset credits are required for native vegetation where the vegetation integrity score:
 - is <15 where the PCT is representative of an endangered or critically endangered ecological community; or

- is <17 where the PCT is associated with threatened species habitat (as represented by ecosystem credits), or is representative of a vulnerable ecological community: or
- is <20 where the PCT is not representative of a TEC or associated with threatened species habitat.

All the above vegetation zones with the except of 1592_low condition Grassland and 1592_Low condition Scattered Trees will require biodiversity offsets as the vegetation integrity score for each zone is >15 for 1592 (commensurate with TEC) and above >17 for 1584 – non-TEC.

All remaining area within the development area has been assessed to be exotic vegetation and no further assessment or offset is required for these areas.

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL FIGURE 6: VEGETATION ZONES

Legend

е
e

Subject Site

Cadastral Boundaries

Vegetation Zones

-	
	VZ1
	VZ2
	VZ3
	VZ4
	VZ5

VZ6

125

250

500

Meters

1:7,500

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 2 | GIS117032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

5 Threatened Species Assessment

5.1 Desktop Assessment

A review of threatened species information was undertaken to provide context and understanding of biodiversity values occurring within the subject site.

Information reviewed included:

- Online database searches involving a 10-km buffer around the site to provide potentially
 occurring threatened flora and fauna and migratory species under both the BC Act and EPBC
 Act:
 - o NSW BioNet Atlas (accessed 19 July 2018 and periodically during BDAR production)
 - Commonwealth Protected Matters of National Significance search tool (accessed 19 July 2018).
- BioNet Vegetation Classification Threatened species associated with known PCTs to occur on site

5.2 Ecosystem Credit Species

The PCT identification tool (BioNet Vegetation Classification) has been used to develop a list of ecosystem credit species associated with the PCTs represented within the Study Area. Ecosystem Credit Species are reliably predicted to occur within the nominated PCTs, and are assumed to occur on site, unless habitat features used by threatened species have been substantially impacted and removed from the study area. These species are presented in **Table 2**.

Scientific Name	Common Name	BC Act	EPBC Act	PCT 1584	PCT 1592
*Anthochaera phrygia	Regent Honeyeater	CE	CE		х
*Callocephalon fimbriatum	Gang Gang Cockatoo	V			x
*Calyptorhynchus lathami	Glossy Black Cockatoo	V			x
Chthonicola sagittata	Speckled Warbler	V			x
Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	V			х
Daphoenositta chrysoptera	Varied Sittella	V		x	x
Dasyurus maculatus	Spotted-tailed Quoll	V	E	х	х
Falsistrellus tasmaniensis	Eastern False Pipistrelle	V			х
Glossopsitta pusilla	Little Lorikeet	V		x	x
Grantiella picta	Painted Honeyeater	V	V		x
*Haliaeetus leucogaster	White-bellied Sea- eagle	V			х
*Hieraaetus morphnoides	Little Eagle	V			х
Hirundapus caudacutus	White-throated Needletail		V	х	x
*Lathamus discolor	Swift Parrot	E	CE		х

Table 2 : Ecosystem Credit Species

Scientific Name	Common Name	BC Act	EPBC Act	PCT 1584	PCT 1592
*Lophoictinia isura	Square-tailed Kite	V			x
Melanodryas cucullata cucullata	Hooded Robin	V			x
Melithreptus gularis gularis	Black-chinned Honeyeater	V			x
Mlcronomus norfolkensis	Eastern Coastal Free-tailed Bat	V		x	x
*Miniopterus australis	Little Bentwing-bat	V			x
Miniopterus orianae oceanensis	Large Bent-winged Bat	V		x	x
Neophema pulchella	Turquoise Parrot	V			x
*Ninox connivens	Barking Owl	V		x	x
*Ninox strenua	Powerful Owl	V			x
Petaurus australis	Yellow-bellied Glider	V			x
Petroica boodang	Scarlet Robin	V			x
Petroica phoenicea	Flame Robin	V		x	
*Phascolarctos cinereus	Koala	V	V		x
Pomatostomus temporalis temporalis	Grey-crowned Babbler (eastern subspecies)	V			x
*Pteropus poliocephalus	Grey-headed Flying-fox	V	V		х
Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	V			x
Scoteanax rueppellii	Greater Broad- nosed Bat	V			Х
Stagonopleura guttata	Diamond Firetail	V			x
*Tyto novaehollandiae	Masked Owl	V			x

V = Vulnerable E = Endangered CE = Critically Endangered * Dual Credit Species

The vegetation on site has been assessed to provide suitable habitat for all species listed above thus could not be confidently assessed that these species do not occur. It is therefore assumed that these species may occur within the subject site.

5.3 Species Credit Species

Species Credit Species are species that cannot be reliably predicted to use an area based on habitat surrogates. Species credit species that are likely to occur within the study area must be surveyed to determine presences/absence or provide an expert report. In the absence of either of these the species will be presumed to be present within the study area.

The conditions of vegetation and habitat within the study area can be assessed by an accredited assessor to have sufficient site degradation of the key habitat constraints associated with species credits species, therefore is unlikely to utilise the site and not requiring further assessment. These species are presented in **Table 3** and a habitat assessment for species credit species in **Table 4**.

Table 3 Species Credit Species

Scientific Name	Common Name	BC Act	EPBC Act	Survey Period	Paddock Trees	РСТ 1589	РСТ 1592
Acacia bynoeana	Bynoe's Wattle	E	V	Sept-March		х	x
Anthochaera phrygia	Regent Honeyeater	CE	CE	Sept-Dec		x	x
Aprasia parapulchella	Pink-tailed Legless Lizard	V	V	Sept - Nov			х
Burhinus grallarius	Bush Stone- curlew	Е		All year	Yes	x	x
Callistemon linearifolius	Netted Bottle Brush	V		Sept-March		x	x
Callocephalon fimbriatum	Gang-gang Cockatoo	V		Oct-Jan		x	x
Calyptorhynchus lathami	Glossy Black Cockatoo	V		Mar- Aug	Yes	x	x
Cercartetus nanus	Eastern Pygmy- possum	V		Oct-March		x	x
Chalinolobus dwyeri	Large-eared Pied Bat	V	V	Sept-March		x	x
Cryptostylis hunteriana	Leafless Tongue Orchid	V	V	Nov-Jan		x	x
Cynanchum elegans	White- flowered Wax Plant	E	Е	All year		x	x
Demlar impar	Striped Legless Lizard	V	V	Sept - Dec			x
Diuris praecox	Rough Doubletail	V	V	July-Aug		x	x
Eucalyptus glaucina	Slaty red Gum	V	V	Dec-Jan	Yes	x	x
Eucalyptus parramattensis subsp. decadens	Earp's Gum	V	V	All year	Yes		x
**Eucalyptus pumila	Pokolbin Mallee	V	V	All year	Yes	x	

	Common	BC Act	EPBC	Survey	Paddock	РСТ	РСТ
Scientific Name	Name	207101	Act	Period	Trees	1589	1592
Grevillea parviflora subsp. parviflora	Small-flower Grevillea	V	V	All year		x	x
Hoplocephalus bitorquatus	Pale- headed Snake	V		Nov-March	Yes	x	x
Haliaeetus leucogaster	White- bellied Sea- eagle	V		July- Dec (Breeding)	Yes	х	x
Hieraaetus morphnoides	Little Eagle	V		Aug- Sept (Breeding)	Yes	х	x
Lathamus discolor	Swift Parrot	Е	CE	May-August	Yes	х	x
**Leionema lamprophyllum subsp. obovatum – endangered population in the Hunter Catchment		E		Oct-March			
Litoria aurea	Green and Golden Bell Frog	E	V	Nov-March		x	x
Litoria brevipalmata	Green- thighed Frog	V		Oct-March		х	x
Lophoictinia isura	Square- tailed Kite	V		Sept -Jan		х	x
Melaleuca biconvexa	Biconvex Paperbark	V	V	All year	Yes	х	
Miniopterus australis	Little Bentwing- bat	V		Dec-Feb		х	x
Minopterus orianae oceanensis – previously Miniopterus schreibersii oceanensis	Large Bent- winged Bat – previously Eastern Bentwing- bat			Jan-Feb & Dec		x	x
Myotis macropus	Southern Myotis	V		Nov-March	Yes	х	x
Ninox connivens	Barking Owl	V		May-Dec	Yes	x	x
Ninox strenua	Powerful Owl	V		May- August		x	x
Persoonia pauciflora	North Rothbury Persoonia	CE	CE	All year			x
Petauroidea volans	Greater glider		V	All year			x

Scientific Name	Common Name	BC Act	EPBC Act	Survey Period	Paddock Trees	PCT 1589	PCT 1592
**Petaurus norfolcensis	Squirrel Glider	V		All year	Yes	х	
Petrogale penicillata	Brush-tailed Rock wallaby	E	V	All year		x	x
Phascolarctos cinereus	Koala	V	V	All year	Yes	x	x
Phascogale tapoatafa	Brush-tailed Phascogale	V		All year	Yes	х	x
Planigale maculata	Common Planigale	V		All year			x
Pomaderris queenslandica	Scant Pomaderris	E		All year			x
Prostanthera cineolifera	Singleton Mint Bush	V	V	All year		x	x
Pteropus poliocephalus	Grey- headed Flying-fox	V	V	Oct-Dec (Breeding)		х	x
Pterostylis chaetophora		V		Sept-Nov			x
Rhodamnia rubescens	Scrub Turpentine	CE		All year		х	
Rhodomyrtus psidioides	Native Guava	CE		All year		х	
Rutidosis heterogama	Heath Wrinklewort	V	V	All year		х	x
Tetratheca juncea	Black-eyed Susan	V	V	July-Dec		х	x
Thesium australe	Austral toadflax	V	V	Nov-Feb			x
Tyto novaehollandiae	Masked Owl	V		May-Aug (Breeding)	Yes	x	x
Vespadelus troughtoni	Eastern Cave Bat	V		Nov-Jan		x	x

 Key: V = Vulnerable
 E = Endangered
 CE = Critically Endangered

**Has been delisted or is no longer associated with the PCTs present post 2018 preparation

Table 4 Species Credit Species Habitat Assessment

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
Flora				
Acacia bynoeana	Bynoe's Wattle	This species occurs in heath or dry sclerophyll forest on sandy soils. Prefers open, sometimes disturbed sites such as trail margins, edges of roadside spoil mounds and in recently burnt patches. Associated overstorey species include <i>Corymbia gummifera, Eucalyptus haemastoma, Eucalyptus parramattensis, Banksia serrata</i> and <i>Angophora bakeri</i> . The vegetation within the subject site is a dry sclerophyll forest formation, in which only one of the listed over-storey species associated with the threatened species occurs (<i>Corymbia gummifera</i>). The site is located within the Beresfield soil landscape in which soils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. This species has not been recorded within the locality. In addition, the site has been used as a commercial poultry farm and since the decommissioning, the site has been routinely grazed, substantially degrading the understorey native vegetation. This land management practice has limited the likelihood of this species being detected within the subject site.	Unlikely	No
Callistemon linearifolius	Netted Bottle Brush	This species grows in dry sclerophyll forest in sheltered locations on the coast and on adjacent ranges. This species is recorded from the Georges River to Hawkesbury River in the Sydney area, and north to the Nelson Bay area of NSW. It has also been recorded in Yengo National Park. There are a small number of records for this species in the locality and the vegetation is regarded as suitable habitat for this species. It is on this basis that further survey is required to determine presences/absences of this species.	Likely	Yes

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
Cryptostylis hunteriana	Leafless Tongue Orchid	This species is known to be extremely cryptic as it does not flower each year. Known to occur within a wide range of habitats including woodlands to swamp heaths. Within the Hunter region larger populations have been typically found in woodland dominated by <i>Eucalyptus haemastoma</i> (Scribbly Gum) and it prefers areas with an open grassy understorey. The species typically prefers moist sandy soils in sparse to dense heath and sedge land, or moist to dry clay loams in coastal forests. This species is known to occur in association with <i>C. subulata</i> and <i>C. erecta</i> . The vegetation within the subject site is a dry sclerophyll forest formation, in which only one of the listed over-storey species associated with the threatened species occurs (<i>Corymbia gummifera</i>). The site is located within the Beresfield soil landscape in which soils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. This species has not been recorded within the locality as defined on the OEH Bionet using a 10km search radius of the locality. In addition, the site has been used as a commercial poultry farm and since the decommissioning, the site has been routinely grazed, resulting in a substantially degraded understorey vegetation and compacted soils. This land management practice has limited the likelihood of this species being detected within the subject site.	Unlikely	No
Cynanchum elegans	White-flowered Wax Plant	The White-flowered Wax Plant usually occurs on the edge of dry rainforest vegetation and other associated vegetation types such as littoral rainforest; coastal scrub and open forest and woodland. Species associated include; Coastal Tea-tree <i>Leptospermum laevigatum</i> – Coastal Banksia <i>Banksia integrifolia</i> subsp. <i>integrifolia</i> coastal scrub; Forest Red Gum <i>Eucalyptus tereticornis</i> aligned open forest and woodland; Spotted Gum <i>Corymbia maculata</i> aligned open forest and woodland; and Bracelet Honey myrtle <i>Melaleuca armillaris</i> scrub to open scrub. The study area vegetation does provide marginal habitat in the form of Spotted Gum aligned open forest and woodland. The current grazing pressures and historic disturbance associated with the subject site indicate that it is likely to reduce the potential occurrence of this species within the study area, though	Likely	Yes

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		cannot be ruled out on this attribute alone. On this basis further survey is required.		
Diuris praecox	Rough Doubletail	The habitat of this species is generally on hills and slopes of near coastal districts in open forests which have a grassy to fairly dense understorey. This species grows on well-drained sandy soils (DoEE 2008). The vegetation within the subject site is a dry sclerophyll forest formation. The site is located within the Beresfield soil landscape in which soils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. The site is approximately 16 -18km away from the coastal fringe (Glenrock SCA & Worimi Conservation Lands) of which this species is recorded. In addition, the site has been used as a commercial poultry farm and since the decommissioning, the site has been routinely grazed, resulting in a substantially degraded understorey vegetation and compacted soils. This land management practice has limited the likelihood of this species being detected within the subject site	Unlikely	No
Eucalyptus glaucina	Slaty Red Gum	This species grows in grassy woodland and dry eucalypt forest on deep, moderately fertile and well-watered soils. This species is found only on the north coast of NSW and in separate districts: near Casino where it can be locally common, and farther south, from Taree to Broke, and west of Maitland (DoEE 2008). The site is east of its known distribution with the closest recorded (Bionet) being 10km west of the site. The Soils that occur on site predominantly a black loam, are consistent with the moderately fertile and well-watered soils this species is generally aligned, providing opportunity for this species to persist. On this basis further survey is required.	Likely	Yes

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
Eucalyptus parramattensis subsp. decadens	Earp's Gum	This species generally occupies deep, low-nutrient sands, often those subject to periodic inundation or where water tables are relatively high. It occurs in dry sclerophyll woodland with dry heath understorey. It also occurs as an emergent in dry or wet heathland. Often where this species occurs, it is a community dominant. Only two separate meta-populations are recorded, one of which is in the Kurri Kurri area. The site is within the Beresfield soil landscape in which soils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. Furthermore, this species has not been recorded within the locality as defined on the OEH Bionet using a 10km search radius of the locality.	Unlikely	No
**Eucalyptus pumila	Pokolbin Mallee	This species is currently known only from a single population west of Pokolbin in the Hunter Valley. Historical records also exist for Wybong and Sandy Hollow, however, has not been recorded recently in these areas. The single known population occupies north-west-facing slopes derived from sandstone. Present as a mid-canopy species to a height of 6 m within dry sclerophyll woodland which has a canopy comprising <i>Eucalyptus fibrosa, Callitris endlicheri</i> and, to a lesser extent, <i>Corymbia maculata.</i> The site is located outside of its known restricted geographic distribution and as such no records exist on site or within the locality	Unlikely	No
Grevillea parviflora subsp. parviflora	Small-flower Grevillea	This species is sporadically distributed throughout the Sydney Basin with sizeable populations in the Hunter and in the Cessnock - Kurri Kurri area (particularly Werakata NP). Separate populations are also known from Putty to Wyong and Lake Macquarie on the Central Coast. This species grows in sandy or light clay soils usually over thin shales, often with lateritic ironstone gravels and nodules. Occurs in a range of vegetation types from heath and shrubby woodland to open forest, the Hunter in Kurri Sand Swamp Woodland and is also known to occur in <i>C. maculata- A. costata</i> open forest. Associated species in the Kurri Sand Swamp Woodland include <i>Eucalyptus parramattensis</i> subsp. <i>decadens, Angophora bakeri</i> and <i>E. fibrosa</i> with Acacia elongata, Dillwynia	Likely	Yes

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		 parvifolia, Melaleuca thymifolia, Grevillea montana, Eragrostis brownii and Aristida vagans. Found over a range of altitudes from flat, low-lying areas to upper slopes and ridge crests. Hunter occurrences are usually 30-70m ASL, while the southern Sydney occurrences are typically at 100-300m ASL. Often occurs in open, slightly disturbed sites such as along tracks. Similar vegetation occurs on site in the formation of dry sclerophyll forest and in particular in the northern edge of the study area where it transitions into <i>C. maculata – A. costata</i> open forest. One record exists as defined on the OEH Bionet using a 10km search of the locality. On this basis further survey is required. 		
**Leionema lamprophyllum subsp. obovatum – endangered population	Leionema lamprophyllum subsp. obovatum population in the Hunter Catchment	The Hunter Catchment population occurs near Pokolbin, where it is found on a rocky cliff line in a dry eucalypt forest. No suitable habitat occurs within the study area and the site is located outside of its known geographic distribution	Unlikely	No
Melaleuca biconvexa	Biconvex Paperbark	This species generally grows in damp places, often near streams or low-lying areas on alluvial soils of low slopes or sheltered aspects. This species is only found in NSW, with scattered and dispersed populations found in the Jervis Bay area in the south and the Gosford-Wyong area in the north. The vegetation within the subject site is predominantly a dry sclerophyll forest formation of which is not associated with this species. The watercourse is severely disturbed with large thickets of <i>Lantana camara</i> due to erosion from cattle grazing and past land disturbance. No records exist as defined on the OEH Bionet using a 10km search radius of the locality.	Unlikely	No

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
Persoonia pauciflora	North Rothbury Persoonia	This species has an extremely restricted distribution; all but one of the plants which make up the only known population occur within a 2.5 km radius of the original specimen at North Rothbury in the Cessnock local government area. Within this range, there are three main sub-populations which comprise approximately 90% of the total population. The other 10% of the population occurs as scattered individuals in what is a relatively disturbed landscape. The site is located outside of its restricted geographic distribution.	Unlikely	No
Pomaderris queenslandica	Scant Pomaderris	This species is found in moist eucalypt forest or sheltered woodlands with a shrubby understorey, and occasionally along creeks. The vegetation within the subject site is a dry sclerophyll forest formation. Due to the current grazing pressures and historic disturbance associated with the subject site, this indicates that it is likely to reduce the occurrence of this species within the study area due to a major loss in shrubby understorey.	Unlikely	No
Prostanthera cineolifera	Singleton Mint Bush	This species grows in open woodlands on exposed sandstone ridges and is usually found in association with shallow or skeletal sands. This species is restricted to only a few localities near Scone, Cessnock and St Albans. The vegetation within the subject site is similar with a dry sclerophyll forest formation. However, the site is located within the Beresfield soil landscape in which topsoils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. Furthermore, the site is located outside of its known geographic distribution	Unlikely	No

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
Pterostylis chaetophora		The species prefers habitat is seasonally moist, dry sclerophyll forest with a grass and shrub understorey. The most commonly observed habitat is vegetation characterised by grassy open forests or derived native grasslands of <i>Eucalyptus amplifolia</i> and <i>Eucalyptus moluccana</i> on gentle flats, or that are dominated by <i>Corymbia maculata</i> with any of <i>Eucalyptus fibrosa</i> , <i>Eucalyptus sideroploia</i> or <i>Eucalyptus crebra</i> . Highly cryptic species; Flowers from September to November. Vegetative reproduction is not common in this group of Greenhoods, but some species may form more than one dropper annually. Fails to flower in dry seasons. Plants are deciduous and die back to the large, underground tubers after seed release. New rosettes are produced following soaking autumn and winter rains. Flowers are pollinated by fungus gnats (family Keroplatidae). The species is associated with PCT 1592; dry sclerophyll forest formation inclusive of <i>Corymbia maculata</i> and <i>Eucalyptus fibrosa</i> . Despite this association, the species has not been recorded within the locality as defined on the OEH Bionet using a 10km search radius of the locality. In addition, the site has been used as a commercial poultry farm and since the decommissioning, the site has been routinely grazed, resulting in a substantially degraded understorey vegetation and compacted soils. This land management practice has limited the likelihood of this species being detected within the subject site.	Unlikely	No
Rhodamnia rubescens	Scrub Turpentine	Occurs in coastal districts north from Batemans Bay in New South Wales, approximately 280 km south of Sydney, to areas inland of Bundaberg in Queensland. Populations of <i>R. rubescens</i> typically occur in coastal regions and occasionally extend inland onto escarpments up to 600 m a.s.l. in areas with rainfall of 1,000-1,600 mm. Found in littoral, warm temperate and subtropical rainforest and wet sclerophyll forest usually on volcanic and sedimentary soils. This species is characterised as highly to extremely susceptible to infection by Myrtle Rust. Myrtle Rust affects all plant parts. The subject site is within the species known range and the site contains an area of wet sclerophyll formation (PCT 1584). This species has been recorded within	Unlikely	No

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		the locality as defined on the OEH BioNet Atlas using a 10km search. Within 1500 m one record occurs; from 1998. This historic record is approximately 1.4 km to the north of the subject site and occurs within a patch which is discontinuous with the subject site driven by the works of Donaldson Coal landholdings, an open cut coal mine.		
Rhodomyrtus psidioides	Native Guava	Populations of the species are typically restricted to coastal and sub-coastal areas of low elevation however the species does occur up to c. 120 km inland in the Hunter and Clarence River catchments and along the Border Ranges in NSW. Pioneer species found in littoral, warm temperate and subtropical rainforest and wet sclerophyll forest often near creeks and drainage lines. This species is characterised being extremely susceptible to infection by Myrtle Rust. Myrtle Rust affects all plant parts. The subject site is within the species known range and PCT1584 is classified as a wet sclerophyll forest. This species has been recorded within the locality as defined on the OEH BioNet Atlas using a 10km search. Within 1500 m two records occur; from 1998 and 2013. The 2013 record is from 835 m north of the subject site, though connected by continuous vegetation to the roadside component of the subject site, the species associated PCT is disconnected by John Renshaw Drive. Given that there are no records south of the road the species is unlikely to persist within the patch of 1584 due to the lack of connectivity to other suitable patches.	Unlikely	No
Rutidosis heterogama	Heath Wrinklewort	This species grows in heath on sandy soils and moist areas in open forest and has been recorded along disturbed roadsides. This species has been recorded from near Cessnock to Kurri Kurri with an outlying occurrence at Howes Valley. Potential habitat is present in the study area, however the site is in a highly disturbed state due to current cattle grazing and historic understorey management. Although the current grazing pressures and historic disturbance associated with the subject site indicates that it is likely to reduce the occurrence of this species within the study area due to a major loss in shrubby understorey, similar vegetation occurs on site and it is located within its known geographic	Likely	Yes

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		distribution. This species has been recorded within the locality as defined on the OEH BioNet Atlas using a 10km search. On this basis further survey is required.		
Tetratheca juncea	Black-eyed Susan	Locally this species is usually found in low open forest/woodland with an undisturbed mixed shrubby understorey and grassy groundcover often in association with the Awaba Soil Landscape. It generally prefers well-drained sites below 200m elevation and annual rainfall between 1000 - 1200mm. The preferred substrates are sandy skeletal soil on sandstone, sandy-loam soils, low nutrients; and clayey soil from conglomerates, pH neutral. Current grazing pressures and historic disturbance on site has resulted in a modified landscape with a loss in shrubby understorey which has reduced the likelihood of occurrence of this species on site. RPS (2017) undertook targeted surveys for this species during its optimal flowering time (Sept-Oct) and was not recorded. However, due to this species inconsistent flowering events, the presence of potential habitat present in the north west corner of the study area, and records existing in the locality. The need for further survey cannot be ruled out.	Likely	Yes
Thesium austral	Austral toadflax	Austral Toad-flax is found in very small populations scattered across eastern NSW, along the coast, and from the Northern to Southern Tablelands. It is also found in Tasmania and Queensland and in eastern Asia. Although originally described from material collected in the SW Sydney area, populations have not been seen in a long time. It may persist in some areas in the broader region. Occurs in grassland on coastal headlands or grassland and grassy woodland away from the coast. Often found in association with Kangaroo Grass (<i>Themeda</i> <i>australis</i>). A root parasite that takes water and some nutrient from other plants, especially Kangaroo Grass. Species may be perennial below ground and	Unlikely	No

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		ephemeral above ground. Species can occur within un-treed native grassland or heterogeneous native/exotic grassland if host flora for parasitisation are present. The species is associated with PCT 1592 though there are no records of the species within the locality as defined on the OEH BioNet Atlas using a 10km search. Of the 34 BAM plots conducted 12 contained <i>Themeda triandra</i> though the species was not dominant. Despite the presence of associated species likelihood of occurrence is low as a result of the subject site's land use history. The site has been used as a commercial poultry farm and since the decommissioning, the site has been routinely grazed, resulting in a substantially degraded understorey vegetation and compacted soils.		
Birds				
Anthochaera phrygia	Regent Honeyeater	This species inhabits dry open forest and woodland, particularly Box-Ironbark woodland, and riparian forests of River She-Oak. Regent Honeyeaters inhabit woodlands that support a significantly high abundance and species richness of bird. These woodlands have significantly large numbers of mature trees, high canopy cover and abundance of mistletoes. Every few years non-breeding flocks are seen foraging in flowering coastal Swamp Mahogany and Spotted Gum forests, particularly on the central coast and occasionally on the upper north coast. The Regent Honeyeater is a generalist forager, although it feeds mainly on the nectar from a relatively small number of eucalypts that produce high volumes of nectar. Key eucalypt species include Mugga Ironbark, Yellow Box, White Box and Swamp Mahogany. Other tree species may be regionally important. For example, the Lower Hunter Spotted Gum forests have recently been demonstrated to support regular breeding events. Flowering of associated species such as Thin-leaved Stringybark <i>Eucalyptus eugenioides</i> and other Stringybark species, and Broad-leaved Ironbark <i>E. fibrosa</i> can also contribute important nectar flows at times.	Likely (foraging)	Yes

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		Additionally, the authors have been advised by John Seidel (OEH) the site is located outside important habitat areas (Breeding) that have been developed by OEH (2018).		
Burhinus grallarius	Bushstone Curlew	This species inhabits open forests and woodlands with a sparse grassy groundlayer and fallen timber. Nest on the ground in a scrape or small bare patch.	Likely	Yes
Callocephalon fimbriatum	Gang-gang Cockatoo	This species is usually found in spring and summer, in tall mountain forests and woodlands, particularly in heavily timbered and mature wet sclerophyll forests. In autumn and winter, the species often moves to lower altitudes in drier more open eucalypt forests and woodlands, particularly box-gum and box-ironbark assemblages, or in dry forest in coastal areas and often found in urban areas. This species favours old growth forest and woodland attributes for nesting and roosting. Nests are located in hollows that are 10 cm in diameter or larger and at least 9 m above the ground in eucalypts. The site comprises similar associated vegetation and habitat in the form of dry sclerophyll forest for this species, in particular box-gum and drier eucalypt woodlands and forest. Additionally, suitable nesting habitat is present on site. On this basis further survey is required.	Likely	Yes
Calyptorhynchus lathami	Glossy Black Cockatoo	The species is uncommon although widespread throughout suitable forest and woodland habitats. Inhabits open forest and woodlands of the coast where stands of She-oak occur. Black Sheoak (<i>Allocasuarina littoralis</i>) and Forest Sheoak (<i>A. torulosa</i>) are important foods. Feeds almost exclusively on the seeds of several species of she-oak (<i>Casuarina</i> and <i>Allocasuarina</i> species). This species is dependent on large hollow-bearing eucalypts for nest sites. Suitable foraging habitat occurs on site in the form of <i>A. torulosa</i> and <i>A. littoralis</i> , additionally suitable nesting habitat is also present. Further survey is required.	Likely	Yes

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
Haliaeetus leucogaster	White-bellied Sea-eagle	In New South Wales it is widespread along the east coast, and along all major inland rivers and waterways. Habitats are characterised by the presence of large areas of open water including larger rivers, swamps, lakes, and the sea. Breeding habitat consists of mature tall open forest, open forest, tall woodland, and swamp sclerophyll forest close to foraging habitat. Nest trees are typically large emergent eucalypts and often have emergent dead branches or large dead trees nearby which are used as 'guard roosts'. Nests are large structures built from sticks and lined with leaves or grass. The site does not comprise of suitable breeding or foraging habitat near large waterbodies, rivers, lake or ocean	Unlikely (foraging /breeding)	No
Hieraaetus morphnoides	Little Eagle	Occupies open eucalypt forest, woodland or open woodland. Sheoak or Acacia woodlands and riparian woodlands of interior NSW are also used. Nests in tall living trees within a remnant patch, where pairs build a large stick nest in winter. The site comprises suitable roosting habitat in the formation of dry sclerophyll forest, and records exist as defined on the OEH Bionet using a 10km search radius of the locality. On this basis further survey is required.	Likely (Breeding)	Yes
Lathamus discolor	Swift Parrot	This species migrates to the Australian south-east mainland between March and October. On the mainland they occur in areas where eucalypts are flowering profusely or where there is abundant lerp (from sap-sucking bugs) infestations. Favoured feed trees include winter flowering species such as Swamp Mahogany <i>Eucalyptus robusta</i> , Spotted Gum <i>Corymbia maculata</i> , Red Bloodwood <i>C. gummifera</i> , Mugga Ironbark <i>E. sideroxylon</i> , and White Box <i>E. albens</i> . Commonly used lerp infested trees include Inland Grey Box <i>E. microcarpa</i> , Grey Box <i>E. moluccana</i> and Blackbutt <i>E. pilularis</i> . The study area comprises suitable foraging habitat, and this species may seasonally use resources within the study area opportunistically or during migration.	Unlikely	No

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		Additionally, the authors have been advised by John Seidel (OEH) the site is located outside important habitat areas (breeding) that have been developed by OEH (2018).		
Lophoictinia isura	Square-tailed Kite	This species is found in a variety of timbered habitats including dry woodlands and open forests and shows a particular preference for timbered watercourses. This species is a specialist hunter of passerines, especially honeyeaters, and most particularly nestlings, and insects in the tree canopy, picking most prey items from the outer foliage. In NSW, scattered records of the species throughout the state indicate that the species is a regular resident in the north, north-east and along the major west-flowing river systems. The site comprises suitable habitat in the formation of dry sclerophyll forest, and records exist as defined on the OEH BioNet Atlas using a 10km search radius of the locality. On this basis further survey is required.	Likely	Yes
Ninox connivens	Barking Owl	Inhabits woodland and open forest, including fragmented remnants and partly cleared farmland. It is flexible in its habitat use, and hunting can extend in to closed forest and more open areas. Roost in shaded portions of tree canopies, including tall midstorey trees with dense foliage such as Acacia and Casuarina species. The site comprises suitable habitat in the formation of dry sclerophyll forest, and partly cleared farmland in a fragmented landscape. Records exist as defined on the OEH BioNet Atlas using a 10km search radius of the locality. On this basis further survey is required.	Likely	Yes
Ninox strenua	Powerful Owl	Inhabits a range of vegetation types, from woodland and open sclerophyll forest to tall open wet forest and rainforest. This species requires large tracts of forest or woodland habitat but can occur in fragmented landscapes as well. The species breeds and hunts in open or closed sclerophyll forest or woodlands and occasionally hunts in open habitats. It roosts by day in dense vegetation comprising species such as Turpentine <i>Syncarpia glomulifera</i> , Black She-oak	Likely	Yes

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		Allocasuarina littoralis, Blackwood Acacia melanoxylon, Rough-barked Apple Angophora floribunda, Cherry Ballart Exocarpus cupressiformis and a number of eucalypt species. The main prey items are medium-sized arboreal marsupials, particularly the Greater Glider, Common Ringtail Possum and Sugar Glider. As most prey species require hollows and a shrub layer, these are important habitat components for the owl. Powerful Owls nest in large tree hollows (at least 0.5 m deep), in large eucalypts (diameter at breast height of 80-240 cm) that are at least 150 years old. The site comprises suitable habitat in the formation of dry sclerophyll forest in a fragmented landscape. Records exist as defined on the OEH Bionet using a		
Tyto novaehollandiae	Masked Owl	Lives in dry eucalypt forests and woodlands from sea level to 1100 m. A forest owl, but often hunts along the edges of forests, including roadsides. Roosts and breeds in moist eucalypt forested gullies, using large tree hollows or sometimes caves for nesting. The typical diet consists of tree-dwelling and ground mammals, especially rats. Extends from the coast where it is most abundant to the western plains. Overall records for this species fall within approximately 90% of NSW. Pairs have a large home-range of 500 to 1000 hectares. The site comprises suitable habitat in the formation of dry sclerophyll forest with forest edges. Records exist as defined on the OEH Bionet using a 10km search radius of the locality. On this basis further survey is required.	Likely	Yes
Bats				
Chalinolobus dwyeri	Large-eared Pied Bat	Found mainly in areas with extensive cliffs and caves. This species roosts in caves (near their entrances), crevices in cliffs, old mine workings and in the disused bottle-shaped mud nests of the Fairy Martin (<i>Petrochelidon ariel</i>), frequenting low to mid-elevation dry open forest and woodland close to these features. Females have been recorded raising young in maternity roosts (c. 20-40 females) from November through to January in roof domes in sandstone caves	Unlikely	No

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		 and overhangs. They remain loyal to the same cave over many years. Found in well-timbered areas containing gullies. No caves are present on site. A review of aerial photography and topographic features didn't identify any significant caves, cliffs or old mine entrances within 2km of the subject site. An operational quarry does exist to the south-west (within 2km of the subject site) which was not considered to suitable habitat for the microbat to roost or breed based on the quarry currently operating in the locality. It was determined no potential breeding habitat occurs within 2km of the subject site. No further survey is required. 		
Miniopterus australis	Little Bentwing- bat	Inhabits moist eucalypt forest, rainforest, vine thicket, wet and dry sclerophyll forest, Melaleuca swamps, dense coastal forests and banksia scrub. Generally found in well-timbered areas. Little Bentwing-bats roost in caves, tunnels, tree hollows, abandoned mines, stormwater drains, culverts, bridges and sometimes buildings during the day, and at night forage for small insects beneath the canopy of densely vegetated habitats. Only five nursery sites /maternity colonies are known in Australia. The site comprises sparse juvenile dry sclerophyll forest with no naturally occurring caves. The site does not comprise a known nursery or maternity colony. There are three abandon structures that are located within the subject site, that have potential to be used for breeding opportunities as well as one culvert structure.	Possible (Breeding)	Yes
Miniopterus orianae oceanensis previously Miniopterus schreibersii oceanensis	Large Bent- winged Bat, previously Eastern Bentwing-bat	The species occurs along the east and north-west coasts of Australia. Caves are the primary roosting habitat, but also use derelict mines, storm-water tunnels, buildings, and other man-made structures. The species forms discrete populations centred on a maternity cave that is used annually in spring and summer for the birth and rearing of young. The site comprises primarily moderate aged dry sclerophyll forest with scattered large old trees, there are no naturally occurring caves. The site does not comprise a known nursery or maternity colony. There are three abandon	Possible (Breeding)	Yes

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		structures that are located within the subject site, that have potential to be used for breeding opportunities as well as one culvert structure.		
Myotis macropus	Southern Myotis	Generally, roost in groups of 10 - 15 close to water in caves, mine shafts, hollow-bearing trees, storm water channels, buildings, under bridges and in dense foliage. Forage over streams and pools catching insects and small fish by raking their feet across the water surface. The site comprises suitable foraging habitat, and hollow bearing trees which could potentially be used for roosting habitat. Further survey is required.	Possible	Yes
Pteropus poliocephalus	Grey-headed Flying-fox	Occur in subtropical and temperate rainforests, tall sclerophyll forests and woodlands, heaths and swamps as well as urban gardens and cultivated fruit crops. Roosting camps are generally located within 20 km of a regular food source and are commonly found in gullies, close to water, in vegetation with a dense canopy. Feed on the nectar and pollen of native trees, in particular Eucalyptus, Melaleuca and Banksia, and fruits of rainforest trees and vines. The site comprises dry sclerophyll forest which does not align with the associated vegetation for this species. Furthermore, no known roosting colonies are present on the subject site.	Unlikely (Breeding)	No
Vespadelus troughtoni	Eastern Cave Bat	A cave-roosting species that is usually found in dry open forest and woodland, near cliffs or rocky overhangs; has been recorded roosting in disused mine workings, occasionally in colonies of up to 500 individuals. Occasionally found along cliff-lines in wet eucalypt forest and rainforest. The site comprises sparse juvenile dry sclerophyll forest with no naturally occurring caves. The site does not comprise a known roosting colony.	Unlikely (Breeding)	No
Reptiles				

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
Aprasia parapulchella	Pink-tailed Legless Lizard	The cryptic species is only known from the Central and Southern Tablelands, and the South Western Slopes. There is a concentration of populations in the Canberra/Queanbeyan Region. Other populations have been recorded near Cooma, Yass, Bathurst, Albury and West Wyalong. This species is also found in the Australian Capital Territory. Inhabits sloping, open woodland areas with predominantly native grassy groundlayers, particularly those dominated by Kangaroo Grass (<i>Themeda</i> <i>australis</i>). Sites are typically well-drained, with rocky outcrops or scattered, partially buried rocks. Commonly found beneath small, partially embedded rocks and appear to spend considerable time in burrows below these rocks; the burrows have been constructed by and are often still inhabited by small black ants and termites. The subject site is within the current mapped known range for the species however is does not represent the known stronghold for the species. The subject site does not contain suitable habitat for the species as rocky outcrops or areas of partially-buried rocks were not recorded and where rocks were noted they were investigated as part of targeted searches for <i>Hoplocephalus bitorguatus</i> . There are no records of the species within the locality as defined on the OEH BioNet Atlas using a 10km search.	Unlikely	No
Delmar impar	Striped Legless Lizard	The Striped Legless Lizard occurs in the Southern Tablelands, the South West Slopes, the Upper Hunter and possibly on the Riverina. Populations are known in the Goulburn, Yass, Queanbeyan, Cooma, Muswellbrook and Tumut areas. Also occurs in the ACT, Victoria and south-eastern South Australia. The species is found mainly in Natural Temperate Grassland but has also been captured in grasslands that have a high exotic component. Also found in secondary grassland near Natural Temperate Grassland and occasionally in open Box-Gum Woodland. Habitat for the species is where grassland is dominated by perennial, tussock-forming grasses though sometimes present in modified grasslands with a significant content of exotic grasses.	Unlikely	No

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		The subject site is within the current mapped known range for the species. The subject site does not contain suitable habitat for the species in the form of grassland and Box-Gum Woodland. This species has not been recorded within the locality as defined on the OEH Bionet using a 10km search radius of the locality. In addition, the site has been used as a commercial poultry farm and since the decommissioning, the site has been routinely grazed, resulting in a substantially degraded understorey vegetation and compacted soils. This land management practice would likely prevent the use of the subject site by this species.		
Hoplocephalus bitorquatus	Pale-headed Snake	The Pale-headed Snake is a highly cryptic species that can spend weeks at a time hidden in tree hollows. Found mainly in dry eucalypt forests and woodlands, cypress forest and occasionally in rainforest or moist eucalypt forest. In drier environments, it appears to favour habitats close to riparian areas. Shelter during the day between loose bark and tree-trunks, or in hollow trunks and limbs of dead trees. The site comprises suitable habitat in the form of dry sclerophyll forest. This coupled with its cryptic nature its likelihood of occurrence cannot be ruled out. Further survey is required.	Likely	Yes
Amphibians				
Litoria aurea	Green and Golden Bell Frog	Inhabits marshes, dams and stream-sides, particularly those containing bull rushes (<i>Typha</i> spp.) or spike rushes (<i>Eleocharis</i> spp.). Optimum habitat includes water-bodies that are unshaded, free of predatory fish such as Plague Minnow (<i>Gambusia holbrooki</i>), have a grassy area nearby and diurnal sheltering sites available. Some sites, particularly in the Greater Sydney region occur in highly disturbed areas. The site does not contain permanent water bodies with suitable vegetation in the form of bull-rushes and spike-rushes.	Unlikely	No

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
Litoria brevipalmata	Green-thighed Frog	Occurs in a range of habitats from rainforest and moist eucalypt forest to dry eucalypt forest and heath, typically in areas where surface water gathers after rain. It prefers wetter forests in the south of its range but extends into drier forests in northern NSW and southern Queensland. This species is thought to forage in leaf-litter. Suitable vegetation is present on site in the form of young dry sclerophyll forest, however the site has a history of disturbance and intense cattle grazing reducing the likelihood of its occurrence. Furthermore, minimal leaf litter is also present on site and no records exist as defined on the OEH Bionet using a 10km search radius of the locality.	Unlikely	No
Marsupials				
Cercartetus nanus	Eastern Pygmy - Possum	This species is found in a broad range of habitats from rainforest through sclerophyll (including Box-Ironbark) forest and woodland to heath, but in most areas woodlands and heath appear to be preferred, except in north-eastern NSW where they are most frequently encountered in rainforest. Feeds largely on nectar and pollen collected from banksias, eucalypts and bottlebrushes; an important pollinator of heathland plants such as banksias; soft fruits are eaten when flowers are unavailable. Shelters in tree hollows, rotten stumps, holes in the ground, abandoned bird-nests etc. Tree hollows are favoured. The site comprises very little suitable vegetation in the form of dry sclerophyll forest with a moderate to dense understorey. There are no records as defined on the OEH Bionet using a 10km search radius of the locality.	Unlikely	No
Petauroidea volans	Greater glider	The species is listed federally though does not have a listing under the BC Act. However, it is listed as a species credit species within the TBDC as is therefore considered here. The species is known to occur within the Sydney Basin subregion and occurs across the eastern coast of the state. The species is associated with PCT 1592. There are eight records as defined on the OEH Bionet using a 10km search radius of the locality, two of which occur within 1500 m of the subject site. Both	Unlikely	No

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
		of these records are from 1998 and therefore persistence of the species within the subject site is unlikely. In addition, field survey targeting arboreal mammals (<i>Petaurus norfolcensis</i> and <i>Phascogale tapoatafa</i>) did not detect the species.		
**Petaurus norfolcensis	Squirrel Glider	Inhabits mature or old growth Blackbutt-Bloodwood forest with heath understorey in coastal areas. Prefers mixed species stands with a shrub or Acacia midstorey. Require abundant tree hollows for refuge and nest sites. The site comprises suitable habitat in the form of dry sclerophyll forest with records existing on the OEH BioNet Atlas using a 10km search radius of the locality. On this basis further survey is required.	Likely	Yes
Petrogale penicillata	Brush-tailed Rock wallaby	This species occupies rocky escarpments, outcrops and cliffs with a preference for complex structures with fissures, caves and ledges, often facing north. Generally, browse on vegetation in and adjacent to rocky areas eating grasses and forbs as well as the foliage and fruits of shrubs and trees. Shelter or bask during the day in rock crevices, caves and overhangs and are most active at night. The site comprises no suitable habitat in the form of rocky landscape characteristics and no records exist as defined on the OEH BioNet Atlas using a 10km search radius of the locality.	Unlikely	No
Phascogale tapoatafa	Brush-tailed Phascogale	This species prefers dry sclerophyll open forest with a sparse groundcover of herbs, grasses, shrubs or leaf litter. Also inhabit heath, swamps, rainforest and wet sclerophyll forest. Nest and shelter in tree hollows with entrances 2.5 - 4 cm wide and use many different hollows over a short time span. The site comprises suitable habitat in the form of dry sclerophyll forest with a sparse groundcover. Further survey is required	Likely	Yes

Scientific Name	Common Name	Habitat requirement	Habitat present on development site	Species requires further assessment
Phascolarctos cinereus	Koala	Inhabit eucalypt woodlands and forests in a fragmented distribution throughout eastern Australia. In NSW this species mainly occurs on the central and north coasts with some populations in the west of the Great Dividing Range but have been recorded in the southern tablelands. This species feeds on the foliage of more than 70 eucalypt species and 30 non-eucalypt species, but in any one area will select preferred browse species. Spend most of their time in trees but will descend and traverse open ground to move between trees. Home range size varies with quality of habitat, ranging from less than two ha to several hundred hectares in size. This species may be an occasional visitor to the study area, but habitat similar to the study area is widely distributed in the local area, indicating the species is not dependent on the available habitat within the impacted area for breeding or important life cycle periods. Past field surveys did record the presence of low numbers of <i>Eucalyptus tereticornis</i> (Koala Feed Tree). At no point was this species observed at >15% cover triggering the need for a SEPP 44 assessment. RPS (2017) recorded no Koalas in their targeted surveys.	Unlikely	No
Planigale maculata	Common Planigale	Inhabit rainforest, eucalypt forest, heathland, marshland, grassland and rocky areas where there is surface cover, and usually close to water. They are active at night and during the day shelter in saucer-shaped nests built in crevices, hollow logs, beneath bark or under rocks. Although current grazing and past historic disturbance has a caused a major loss in shrubby/grassy understorey, the site comprises marginal suitable habitat in the form of dry sclerophyll eucalypt forest, with grasslands and a grassy understorey. On this basis further survey is required.	Likely	Yes

**Has been delisted or is no longer associated with the PCTs present post 2018 preparation

5.4 Candidate Species Surveys

5.4.1 Targeted Species Survey Methodology

RPS Australia (2017)

The subject site has been surveyed for threatened species by RPS Australia during 2012, 2013 (Planning Proposal) and 2017.

RPS Australia were commissioned by the previous landowners to produce a Biodiversity Inventory Assessment to inform the Biodiversity Assessment Report (BAR) under the former BBAM (2014) Methodology for the Black Hill Industrial Development. In accordance with the provisions set out in the Biodiversity Conservation Act (Savings and Transitions) Regulation 2017, surveys (and results) undertaken by or under the supervision of accredited assessors can be used in place of onsite surveys if the surveys have been carried out in accordance with current survey methods and within five years of the lodgement date of the BDAR. As such, fauna survey work carried out by RPS using accepted fauna survey methods, had been relied upon to inform the BDAR (Final V2 August 2018).

Flora surveys carried out by RPS (2017) were used to inform preliminary desktop analysis of the vegetation that occurs on site. The flora survey has been contemporised in accordance with the BAM (2017), and requirements for threatened flora surveys in line with the OEH Threatened Flora guidelines (2016).

MJD Environmental Fauna Survey Update (2019 & 2021)

It is acknowledged that the original RPS fauna surveys that were relied upon (for Version 2 BDAR 2018), to satisfy the required targeted surveys for candidate species were carried out in early 2013. Survey results that are more than five years old can only be used to inform the assessment process but cannot be used in place of a targeted species survey (OEH 2018d). At the time of submission (November 2018) the surveys were assessed to be out of date and could not be utilised for target surveys. To ensure compliance with the BAM all candidate species requiring targeted surveys have been undertaken as part of this updated BDAR Version 3 (2019)

In addition, at the time of compiling the BDAR (V2 August 2018) and prior to submission (November 2018), The NSW Office of Environment and Heritage released "*Species credit*" threatened bats and habitats: NSW Survey guide for the Biodiversity Assessment Method. This updated survey guideline was released in September 2018, after the completion of fieldworks but prior to submission. To ensure microbat surveys are compliant with the new survey guidelines, addition survey for microbats that are candidate species with potential habitat to occur on the subject site have been undertaken as part of the updated BDAR.

During June 2021 assessment of the additional road corridor, the area was assessed for suitable habitat for associate candidate species. This was inclusive of a hollow-bearing and habitat tree survey and inspection of existing culverts to determine use/suitability by microbats.

5.4.2 Targeted Flora Survey

Targeted threatened flora surveys were carried out on 4 & 5 July, 28 & 29 August 2018 targeting flora species that could not be conclusively ruled out from occurring on site due to suitable habitat occurring on site. They included:

- Callistemon linearifolius Netted Bottle Brush
- Eucalyptus glaucina Slaty Red Gum
- Cynanchum elegans White-flowered Wax Plant
- Diuris praecox Rough Double-tail
- Grevillea parviflora subsp. parviflora Small-flower Grevillea
- Rutidosis heterogama Heath Wrinklewort

Tetratheca juncea Black-eyed Susan

Threatened flora surveys were undertaken in accordance with the *NSW Guide to Surveying Threatened Plants* (OEH 2016). The following techniques were employed:

- Parallel field-transverse survey technique. Two ecologists walking parallel at distance of between 5-10m depending on density of the vegetation was at time of survey.
- Surveys conducted in suitable habitat for each of the targeted species
- Transects were recorded using a hand-held GPS unit

During the additional surveys conducted in June of 2021, threatened flora was searched for, with two ecologists traverse thing entirety of the 5 - 15 m wide vegetated areas of the linear road corridor. Though this is outside of the prescribed survey periods for some species, larger less cryptic species such as *Callistemon linearifolius* would be detected if present due to the ease of identification from other characteristics.

The following **Table 5** provides the survey schedule for each species. Refer to **Figure 7** for survey transects.

Species	Survey Period	Survey Carried out	Presence/ Absence	Comment
Callistemon linearifolius	Sept-March	4-5 July 2018 & 9 th June 2021	Not recorded	Undertaken outside of survey period. This survey was undertaken outside the survey period, due to the reliability of identification of this species all year round and the lack of midstorey, increasing visibility during survey works
Eucalyptus glaucina	All year	4-5 July 2018 & 9 th June 2021	Not recorded	
Cynanchum elegans	All year	4-5 July 2018 & 9 th June 2021	Not recorded	
Diuris praecox	July-Aug	28-29 th August 2018 (MJD)	Not recorded	Species ruled out based on habitat (Refer to Table 4). Notwithstanding surveys conducted by RPS (2017). Surveys by MJD Environmental to ensure coverage per OEH (2016) guideline. Voucher population at Adamstown Heights was observed flowering prior to site survey 25 th August 2018.
Grevillea parviflora subsp. parviflora	All year	4-5 July 2018 & 9 th June 2021	Not recorded	

Table 5 Targeted Flora survey timeframes

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

Species	Survey Period	Survey Carried out	Presence/ Absence	Comment
Rutidosis heterogama	All year	4-5 July 2018 & 9 th June 2021	Not recorded	
Tetratheca juncea	July-Dec	Nov-Dec 2012 (RPS) 28-29 th August 2018 (MJD)	Not Recorded	Species ruled out based on habitat (Refer to Table 4). Notwithstanding surveys conducted by RPS (2017). Surveys by MJD Environmental to ensure coverage per OEH (2016) guideline. Voucher population was observed flowering prior to site survey 25 th August 2018.

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL FIGURE 7: TARGETED FLORA SURVEY

Legend

Transect

- Watercourse

Subject Site

Cadastral Boundaries

125

250

500

Meters

1:7,500

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 2 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

5.4.3 Targeted Fauna Survey Methods

Threatened fauna surveys were carried out targeting the following fauna species that could not be conclusively ruled out from occurring on site due to suitable habitat occurring within the subject site.

All fauna surveys have been carried out in accordance with the *Threatened Biodiversity Survey and Assessment: Guidelines for development and activities* (DECC 2004). The survey methodology used for this project was modified to incorporate modern survey techniques and equipment.

In addition, targeted microbat surveys were undertaken in accordance with "Species credit" threatened bats and habitats: NSW Survey guide for the Biodiversity Assessment Method (OEH 2018e).

Refer to Figure 8 for all targeted fauna surveys.

Birds

- Bush Stone Curlew Burhinus grallarius
- Glossy Black Cockatoo Calyptorhynchus lathami
- Major Mitchell's Cockatoo Lophochroa leadbeateri
- Little Eagle Hieraaetus morphnoides
- Square-tailed Kite Lophoictinia isura
- Swift Parrot Lathamus discolor
- Regent Honeyeater Anthochaera phrygia
- Masked Owl Tyto novaehollandiae
- Powerful Owl Ninox strenua

Bats

- Eastern Bentwing-bat Miniopterus schreibersii oceanensis
- Little Bentwing-bat Miniopterus australis
- Southern Myotis Myotis macropus

Marsupials

- Squirrel Glider Petaurus norfolcensis
- Brush-tailed Phascogale Phascogale tapoatafa
- Common Planigale *Planigale maculata*

Reptiles

Pale-headed Snake Hoplocephalus bitorquatus

The following table (**Table 6**) outlines the fauna survey methods utilised for the targeted candidate species. In addition, The fauna surveys carried out by RPS Australia have been used to inform the BDAR. Refer to **Appendix J** for RPS survey effort table, survey plan and threatened fauna plan.

Table 6 Fauna Survey Effort (MJD 2018-21)

Fauna Group	Target species	Survey method	Survey effort	Date
Herpetofauna	<i>Hoplocephalus bitorquatus</i> (Pale-headed Snake)	 Herpetofauna surveys targeting areas of appropriate habitat Targeted habitat searches/habitat surveys Opportunistic surveys 	 Inspecting rock crevices Raking leaf litter and turning logs, rocks and other debris during Hollow bearing tree survey 	25 th Feb, 1 st , 2 nd March 2019, 9 th June 2021
Terrestrial	<i>Planigale maculata (</i> Common Planigale)	 Remote Wildlife Cameras Scout Guard wildlife trail cameras were mounted in appropriate terrestrial habitat within the subject site, designed to take photographs when triggered by motion. Bait stations were utilised to attract fauna to camera trap. bait containing a mixture of oats, honey, and peanut butter, bait station was sprayed with an attractant of honey / sugar water to increase the chance of arboreal fauna. Cameras were used to detect both diurnal and nocturnal faunal movement 	 Five Scout Guard trail cameras were utilised during field surveys A total of 80 camera trap nights were undertaken. 	15 th , 16 th , 22 nd May 2019
		 Spotlighting 75-Watt hand-held spotlight and head torch whilst driving and walking over the subject site. Areas of bush were targeted, as well as tracks entering and entering the subject site. 	 A total of 4 person hours of spotlighting was conducted over 3 nights. 	15 th , 16 th , 22 nd May 2019
Arboreal	Petaurus norfolcensis (Squirrel Glider) Phascogale tapoatafa (Brush-	 Remote Wildlife Cameras Scout Guard wildlife trail cameras were mounted in appropriate terrestrial habitat within the subject site, designed to take photographs when triggered by motion. Bait stations were utilised to attract fauna to camera trap. bait containing a mixture of oats, honey, and peanut butter, bait station was sprayed with an attractant of honey / sugar water to increase the chance of arboreal fauna. Cameras were used to detect both diurnal and nocturnal faunal movement 	 Eight Scout Guard trail cameras were utilised during field surveys A total of 176 camera trap nights were undertaken. 	25 th Feb – 14 th Mar 2019
	tailed Phascogale)	 Spotlighting Spotlighting was undertaken with the use of a Lightforce Enforcer 140mm LED (376m @ 1 LUX) hand-held spotlight and head torch whilst traversing subject site. Areas of bush were targeted, as well as tracks entering and entering the subject site. 	 A total of 4 person hours of spotlighting was conducted over 3 nights. 	15 th , 16 th , 22 nd May 2019

Fauna Group	Target species	Survey method	Survey effort	Date
Diurnal Avifauna	Species Credit- Avifauna	 Systematic diurnal census and opportunistic observations Via direct visual observation or by recognition of calls or distinctive features such as nests, feathers and owl regurgitation pellets Targeted survey (RPS 2017): Targeted surveys for nectar dependant species were performed during the Spotted Gum (<i>Corymbia maculata</i>) flowering period (May to October 2017) to specifically target the Regent Honeyeater and Swift Parrot. Conditions suitable for performing targeted surveys for the Regent Honeyeater were examined on 10 separate days in this period. Conditions observed during the targeted surveys were typified by spot flowering by Spotted Gum. 	 Opportunistically and during field work Hollow utilisation for Gang- Gang Cockatoo and Glossy Black Cockatoo Utilisation of canopy trees for nesting :Little Eagle and Square-tailed Kite. 	Jun, July, Aug, 2018. Feb, Mar, May 2019, 9 th June 2021
Nocturnal Avifauna (Owls)	Ninox connivens (Barking Owl) Ninox strenua (Powerful Owl) Tyto novaehollandiae (Masked Owl)	 Stag watch: any tree identified as possible owl tree Call play back: Aural recognition of threatened owls. Pre- recorded calls of owls with the potential to occur within the subject site were broadcast to elicit vocal responses or to attract nocturnal fauna to the playback site. Calls were broadcast through an amplification system (loud hailer 25w) designed to project the sound for at least 1 km under still night conditions 	 Stag watch possible owl trees prior to dusk and for half hour after dusk. The call of each candidate species was broadcast for at least five minutes, followed by five minutes of listening, the area was then spotlighted on foot (5 nights) Opportunistically and during field work 	15 th , 16 th , 22 nd May 12 th 14 th June 2019
Micro- Chiropteran Bats	<i>Myotis macropus</i> (Southern Myotis)	 Anabat II Detector and CF ZCAIM units Microbat echolocation calls were recorded for the entire night (from 6pm to 6am) Bat call analysis was undertaken by Anna McConville who is experienced in the analysis of bat echolocation calls. Harp Traps Designed to catch microbats, allowing for visual identification. Any microbats caught were identified early the following morning and kept in small cloth bag which was kept in a cool dark environment until they could be released prior to sun up or nightfall within the subject site of capture. Roost Search: Inspection of old buildings within the subject Site 	 Two anabats used over eight consecutive nights of sampling, with emphasis placed on those areas deemed likely to provide potential foraging and flyway sites for Myotis (creekline or lowland areas. Utilised two harp traps within creekline for a total of 16 trap nights Roost search included roof cavities, holes in walls and any evidence of Bat utilisation 	25 th Feb – 14 th Mar 2019
	Miniopterus schreibersii oceanensis	 Harp Traps Designed to catch microbats, allowing for visual identification. Any microbats caught were identified early the following morning and kept in small cloth bag which was kept in a cool dark 	 Utilised four harp traps adjacent to entry of old buildings within the subject site for a total of 24 trap 	25 th Feb – 14 th Mar 2019

Fauna Group	Target species	Survey method	Survey effort	Date
	(Eastern Bentwing- bat) <i>Miniopterus</i> <i>australis</i> (Little bentwing-bat)	 environment until they could be released prior to sun up or nightfall within the subject site of capture. Roost Search: Inspection of old buildings within the subject site 	nights. (two traps for two nights per structure and repeated two weeks later) - Roost search including roof cavities, holes in walls and any evidence of Bat utilisation	

Secondary Indications and Incidental Observations

Opportunistic sightings of secondary indications (scratches, scats, diggings, tracks etc.) of resident fauna were noted. Such indicators included:

- Distinctive scats left by mammals;
- Scratch marks made by various types of arboreal animals;
- Nests made by various guilds of birds;
- Feeding scars on Eucalyptus trees made by Gliders;
- Whitewash, regurgitation pellets and prey remains from Owls;
- Aural recognition of bird and frog calls;
- Skeletal material of vertebrate fauna; and
- Searches for indirect evidence of fauna (such as scats, nests, burrows, hollows, tracks, and diggings).

5.4.4 Limitations

Limitations associated with this assessment report are presented herewith. The limitations have been taken into account specifically in relation to threatened species assessments, results and conclusions.

In these instances, a precautionary approach has been adopted; whereby 'assumed presence' of known and expected threatened species, populations and ecological communities has been made where relevant and scientifically justified to ensure a holistic assessment.

Seasonality & Conditions

The flowering and fruiting plant species that attract some nomadic or migratory threatened species, often fruit or flower in cycles spanning a number of years. Furthermore, these resources might only be accessed in some areas during years when resources more accessible to threatened species fail. As a consequence, threatened species may be absent from some areas where potential habitat exists for extended periods and this might be the case for nomadic and opportunistic species.

Data Availability & Accuracy

The collated threatened flora and fauna species records provided by NSW Bionet are known to vary in accuracy and reliability. This is usually due to the reliability of information provided to the National Parks and Wildlife Service (NPWS) for collation and/or the need to protect specific threatened species locations. During the review of threatened species records sourced from OEH Atlas of NSW Wildlife, consideration has been given to the date and accuracy of each threatened species record in addition to an assessment of habitat suitability within the study area.

Similarly, EPBC Protected Matters Searches provide a list of threatened species and communities that have been recorded within 10 km of the study area, or which have suitable habitat within the wider area, and are subject to the same inherent inaccuracy issues as the State derived databases.

In order to address these limitations in respect to data accuracy, threatened species records have only been used to provide a guide to the types of species that occur within the locality of the study area. Consequently, BAM assessment and the results of surveys conducted within the study area and surrounds have been used to assess the likelihood of occurrence of threatened species, populations and ecological communities to occur therein.

5.4.5 Weather Conditions

Field surveys were undertaken by MJD Environmental between the 20th June 2018 and 20th July 2018, 25th and 14th March, 15th and 22nd May, 12th and 14th June 2019 and then again over a single day on 9th June 2021. The prevailing weather conditions during the survey are presented in a **Table 7** below.

Date	Min Temp (°C)	Max Temp (°C)	Rain (mm)	Wind (km/h) 9am / 3pm	Sunrise- Sunset
20 Jun 2018	9.8	18.5	24.8	W 11 to SSE 15	0656-1655
21 Jun 2018	10.5	16.3	0.4	WNW 11 to N 2	0656-1655
22 Jun 2018	7.5	15.4	0.2	WNW 11 to WNW 4	0656-1655
26 Jun 2018	1.3	18.2	0.0	WNW 15 to E 9	0657-1656
27 Jun 2018	4.1	17.8	0.2	SW 7 to E 20	0657-1656
03 Jul 2018	6.9	17.0	0	WNW 11 to NNE 9	0657-1659
04 Jul 2018	6.1	20.0	0.2	E 6 to ENE 6	0657-1659
05 Jul 2018	8.8	23.4	0.2	WNW 9 to NNE 11	0657-1700
18 Jul 2018	9.3	22.0	0.0	WNW 13 to WNW 24	0653-1707
20 Jul 2018	0.3	21.4	0.0	WSW 17 to W 30	0652-1708
25 Feb 2019	13.9	27.4	0.0	Calm to SE 24	0638-1935
26 Feb 2019	12.5	30.7	0.0	NW 9 to ESE 13	0639-1934
27 Feb 2019	14.5	31.0	0.0	SE 7 to ESE 22	0640-1932
28 Feb 2019	13.9	30.5	0.0	Calm to ESE 17	0641-1931
1 Mar 2019	16.1	31.3	0.0	WSW 9 to SE 28	0642-1930
2 Mar 2019	16.8	30.9	0.0	E 11 to SE 22	0643-1929
3 Mar 2019	17.6	32.1	0.0	E 11 to ESE 22	0643-1928
4 Mar 2019	15.2	34.3	0.0	Calm to SE 13	0644-1926
5 Mar 2019	14.8	35.9	0.0	SSW 6 to WNW 9	0645-1925
6 Mar 2019	18.1	38.0	0.0	N 9 to WNW 22	0646-1924
7 Mar 2019	20.4	22.3	0.6	ESE 11 to ESE 20	0647-1923
8 Mar 2019	17.3	34.0	0.0	E 7 to N 9	0647-1921
9 Mar 2019	19.5	34.8	0.0	WSW 7 to ESE 24	0648-1920
10 Mar 2019	20.5	33.3	42.4	Calm to NW 13	0649-1919
11 Mar 2019	19.7	32.2	0.0	S 6 to E 20	0650-1918
12 Mar 2019	20.1	36.0	0.0	WNW 13 to WNW 19	0650-1916
13 Mar 2019	20.6	27.5	0.0	SSE 9 to ESE 24	0651-1915
14 Mar 2019	21.6	31.4	0.0	ENE 20 to ESE 13	0652-1914
15 May 2019	19.3	27.4	0.0	S 9 to SSE 22	0653-1913
16 May 2019	18.3	22.4	0.0	WNW 11 to WSW 19	0653-1911
22 May 2019	18.6	28.8	0.2	Calm to ESE 15	0658-1903
12 June 2019	11.2	22.8	0.0	Calm	0652 -1653
14 June 2019	8.2	19.9	0.0	Calm	0653 -1653
09 June 2021	9.4	13.5	9.0	WNW 35 to WNW 31	0652 -1658

Table 7 Prevailing Weather Conditions

Sources: http://www.bom.gov.au/climate/dwo/201806/html/IDCJDW2079.201806.shtml; http://www.bom.gov.au/climate/dwo/IDCJDW2079.latest.shtml; http://www.ga.gov.au/bin/geodesy/run/sunrisenset

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL FIGURE 8: FAUNA SURVEY LOCATIONS

Legend

- - Cadastral Boundaries

125

250

500

Meters 1:7,500

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 2 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

6 Targeted Threatened Species Survey Results

6.1 Flora Species Results

No flora candidate species were detected during the targeted surveys undertaken by MJD Environmental during July and August 2018 or during June 2021.

6.2 Hollow Bearing Tree Survey

A total of 91 (confirmed and potential) hollow bearing trees were identified within the subject site, of which 18 were considered to be of appropriate size and orientation to be utilised by large Forest Owls.

Characteristics used to determine a potential hollow suitable for a Forest Owl included hollow greater than 20cm, unimpeded entry to hollow, no evidence of mud present, straight down hollows often preferred by the Masked Owl (pers com. M. Murray 2018).

Figure 9 shows all hollow bearing trees observed (including potential hollow bearing trees) and the location of hollows that are greater than 20cm suitable for large Forest Owls.

6.3 Fauna Species Results

The following fauna survey results have been collated from MJD Environmental surveys during 2018-19 and targeted avifauna surveys undertaken by RPS (2017) within the last two years.

A total of 71 fauna species where detected within the subject site, this total included 37 avifauna, 28 mammals (three exotic species), four reptiles and two amphibians. Of the fauna species detected a total of eight were threatened species: three ecosystem species, one specie credit species and four dual credit species.

A complete list of fauna detected during field surveys has been provided in **Appendix I.** All threatened fauna species detected have been present in **Figure 10**.

Mammals

Targeted survey results for threatened terrestrial and arboreal mammals only detected common species often associated with disturbed environments that lack structure. No threatened mammal species where observed during the survey period. Species detected included Brown Antechinus (*Antechinus stuartii*), Common Dunnart (*Sminthopsis murina*), Sugar Glider (*Petaurus* breviceps), Black Rat (*Rattus rattus*), Common Brushtail Possum (*Trichosurus vulpecula*), Eastern Grey Kangaroo (*Macropus giganteus*), Red-necked Wallaby (*Macropus rufogriseus*) and Exotic species such as Cattle (*Bos taurus*), European Rabbit (*Oryctolagus cuniculus*)Red Fox (*Vulpes vulpes*).

Grey-headed Flying Fox (*Pteropus poliocephalus*) was observed flying over and sporadically foraging within the subject site on *Eucalyptus moluccana* (March 2019).

Microchiropterans Bats

A total of 13 microbat species were detected via the use of the Anabat express echo-location call recorder, with three species captured in harp traps.

Of the recorded species, five are listed as Vulnerable under the BC Act (all detected via the Anabat Echo locator Unit),

- Large-eared Pied Bat (*Chalinolobus dwyeri*);
- Little Bent-wing Bat (*Miniopterus australis*);
- Eastern Bent-winged Bat (Miniopterus schreibersii oceanensis);
- Eastern Coastal Free-tailed Bat (Mormopterus norfolkensis); and

• Yellow-bellied Sheath-tailed Bat (Saccolaimus flaviventris).

The remaining microbats positively identified were the Eastern White-stripped Free-tailed Bat (*Austronomus* australis), Gould's Wattled Bat (*Chalinolobus gouldii*) (Harp trap and Anabat), Chocolate Wattled Bat (*Chalinolobus morio*) (Harp trap and Anabat) and Ride's Free-tail Bat (*Mormopterus ridei*), Gould's Long-eared Bat (*Nyctophilus gouldii*), Eastern Horseshoe Bat (*Rhinolophus megaphyllus*), Eastern Forest Bat (*Vespadelus pumilus*) and Little Forest Bat (*Vespadelus vulturnus*) are all known common species.

Additionally, the following bat species had potential to occur (detected using the Anabat) within the subject site, but could not be confidently identified:

- Eastern Falsistrelle (Falsistrellus tasmaniensis) (Vulnerable under the BC Act);
- Large-footed Myotis (*Myotis macropus*) (Vulnerable under the BC Act);
- Lesser long-eared Bat (Nyctophilus geoffroyi)
- Greater Broad-nosed Bat (Scoteanax rueppellii)
- Eastern Broad-nosed Bat (Scotorepens orion)
- Large Forest Bat (Vespadelus darlingtoni);
- Southern Forest Bat (Vespadelus regulus); and
- Eastern Cave Bat (Vespadelus troughtoni) (Vulnerable under the BC Act)

Refer to **Appendix I** for a detailed list of recorded species and **Appendix K** for the Anabat Call Recording reports.

Targeted surveys focused on three candidate species which suitable habitat was determined to occur within the subject site.

The two Bent-wing bats *Miniopterus australis* and *Miniopterus schreibersii oceanensis* are listed as candidate species for breeding habitat only. The presences of two old derelict buildings remaining from the commercial chicken farm and an old farm shed were determined to provide marginal breeding habitat for the two species. An inspection of the buildings was carried out prior to establishing traps to observe if the buildings were being utilised by microbats. Roof cavities, cracks in walls, dark cupboards and old industrial size refrigerators were inspected for any signs of utilisation. There was very minor occurrence of microbat guano in the laboratory found in the south west corner of the site. No bats were observed roosting in the buildings during these building inspections. The culvert which allow passage of the watercourses which crosses John Renshaw Drive was inspected for appropriateness of microbat use and any evidence thereof.

Harp traps were set up at all three buildings with a focus on entry points to the structures. A harp trap was also set up adjacent to the laboratory where an obvious fly way was present.

The survey for the two target Bent-winged bats was undertaken at the end of the prescribed survey period (Dec – Feb) and was completed during early March. The environmental conditions during March were similar to February with significantly hot days and warm nights. There was no change in environmental condition from the end of February to early March that would change potential breeding capacity of the targeted species. That is, climatic summer like conditions persisted beyond the prescribed survey period in the 2019 survey season.

No targeted threatened microbats were captured during the harp trap surveys with only common microbats detected. The two Bent-winged species were detected on site using the Anabat echo-location call recorders away from the structures.

The riparian areas within the subject site often hold pools of water that may be regarded as suitable habitat for *Myotis macropus*.

During the survey period these creeks were completely dry due to the extended dry period in the Hunter region. Survey for the *Myotis* was still undertaken during the prescribed survey period. Surveys involved the establishment of four harp traps placed within creeklines, two Anabat recorders were also located within the creeklines.

The target species *Myotis macropus* was not captured in the harp traps and was not confidently identified by the Anabat recordings, thus this species cannot be confirmed to be present on site.

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

The candidate species *Chalinolobus dwyeri* was detected during targeted surveys for the *Myotis macropus*. This species was not formally targeted as part of the surveys as it was determined that the subject site does not contain breeding habitat such as caves, mine shafts or cliff faces. It was also determined during a desktop assessment that there was no suitable breeding habitat within a 2km radius of the subject site, thus not requiring survey in accordance with the OEH Threatened bats guideline (2018).

This species was recorded using an Anabat ultrasonic detector in the southwest corner of the subject site. A total of two individual calls over two evenings were recorded for this species during the nine nights of survey.

This species has potential to utilise the vegetation found within the subject site as a potential area of forage as part of a wider home range. The vegetation observed within the site is floristically similar to much of the vegetation in the locality surrounding the subject site and provides space that lacks vegetation clutter which this species is known to forage (Williams and Thomson 2018).

This species is known to forage close to roosting sites generally within two kilometres of its roost or breeding habitat. During the habitat suitability assessment an in-depth desktop assessment was carried out to ensure potential breeding and roosting habitat in the form of caves, cliffs, scarps or mine shafts was undertaken. It was concluded that no distinctive features as described to be breeding or roosting habitat were within a 2km radius of the subject site therefore the likelihood of this species being present was low and therefore there are no formal requirements to survey for this species. Notably the species has been recorded incidentally during targeted surveys for other microbats.

The dry sclerophyll forest found within the site is represented throughout the locality and is protected in the National Park Estate in the nearby Sugarloaf range (where likely roosting/ breeding habitat exists) and mine company offset sites that occur just west of the subject site.

Avifauna

A total of 37 native bird species in the subject site through systematic and opportunistic surveys. Frequently recorded species during diurnal bird censuses primarily consisted of common woodland species such as the Willie Wagtail (*Rhipidura leucophrys*), Australian Magpie (*Cracticus tibicen*), Laughing Kookaburra (*Dacelo novaeguineae*), White Winged Cough (*Corcorax melanorhamphos*), and Black-faced Cuckoo-shrike (*Coracina novaehollandiae*).

One threatened bird species was observed on multiply days during MJD environmental flora and fauna surveys. The Grey-crowned Babbler (*Pomatostomus temporalis temporalis*) was observed foraging throughout the vegetation on site primarily in the northern and eastern vegetated areas. Nest were also observed in these areas.

Nocturnal Avifauna

A total of three nocturnal birds were recorded during formal nocturnal surveys. Call play-back, listening surveys, stag-watching and spotlighting were carried out for the three target Forest Owls, over five nights during May and June 2019.

Prior to commencement of the Owl breeding period (May-August) a hollow bearing tree survey of the subject sites was carried out to identify any trees that maybe suitable for large Forest Owl breeding or roosting activities. In accordance with the OEH Threatened Biodiversity Data Collection (TBDC) all trees observed to exhibit breeding tree attributes of a hollow greater than 20cm in diameter were considered to be potential Owl breeding/roosting trees. Additionally, information was gathered at the time of assessment that included the configuration of the hollow entrance, evidence of utilisation such as whitewash or remains often observed in owl pellets, and the presents of mud in hollows (if visible) that would restrict utilisation by Owl species.

A total of 18 hollow bearing trees exhibited a hollow greater than 20cm in size, an entrance to the hollow that would be accessible for an Owl species and no other attributes that may limit the utilisation of the tree for roosting or breeding proposes. All large hollows (>30cm) observed were a particular focus for further investigation in particular hollows that were straight down as these are often used as Owl roosting and breeding trees (M. Murray pers comm. 2018)

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

The afternoon prior to commencing formal Owl surveys, all trees with attributes suitable to support a breeding Owl were visually inspected for any recent utilisation. No trees exhibited any recent usage.

Each night of survey commenced with a listening period and stag watch from dusk for approximately one hour. No calls were heard during the listening period on each of the survey nights. At the completion of the listening period, a call play-back session commenced where each of the three Forest Owl species calls were played and followed by a listening period.

On the third evening of the survey period approximately 30 minutes after the call playback session had ceased, a Masked Owl was heard calling west of the call play back site. Spotlighting in the vicinity of the area begun and a second call was heard adjacent to the call play back site. At this point a bird that appeared to look like a Mask Owl was seen flying away from the site.

Further inspections of the subject site after the initial detection of the Owl occurred to try and identify if the Owl was breeding or roosting on the subject or if the Owl had been attracted by the call play back from outside the area. No further detection of the species occurred during the survey period including Owls duetting or utilisation of the area. It was determined that although the Owl was positively identified by call, there was no evidence of the Owl breeding within the subject site and the individual was called in as a response to call playback surveys.

No other threatened Owl species were heard responding to call backs played during the survey effort.

An additional two nocturnal bird species were observed during the survey period namely the Australian Owlet Nightjar (*Aegotheles cristatus*), Tawny Frog mouth (*Podargus strigoides*) these two species were heard and observed on a single occasion during spotlighting.

Swift Parrot and Regent Honeyeater

Targeted surveys for nectar dependant species were performed (by RPS) during the Spotted Gum (*Corymbia maculata*) flowering period (May to October 2017) to specifically target the Regent Honeyeater and Swift Parrot. Conditions suitable for performing targeted surveys for the Regent Honeyeater were examined on 10 separate days in this period. Conditions observed during the targeted surveys were typified by spot flowering by Spotted Gum.

Regent Honeyeater and Swift Parrot surveys performed throughout the study area failed to detect any occurrence of these species. In the same period, Regent Honeyeater and Swift Parrot observations within the locality and region, as represented in the 'recent sightings' log of 'Birdline New South Wales' (<u>http://www.eremaea.com/BirdlineArchive.aspx?Birdline=2&From=20170415&To=20171020</u>), are summarised in **Table 8**. This summary provides an indication of Regent Honeyeater and Swift Parrot activity during the survey period.

Table 8 Regent Honeyeater and Swift Parrot observations in the Hunter Region (May to October 2017)

Observation Date	Location
8 May 2017	Hunter Economic Zone. Regent Honeyeater and Swift Parrot feeding on Spotted Gum.
9 May 2017	Werakata National Park (Kitchener). Swift Parrots observed and no Regent Honeyeaters.
16 May 2017	Werakata SCA (Pelton). Swift Parrot feeding on Spotted Gum.
24 May 2017	Quorrobolong. Regent Honeyeater feeding on Spotted Gum.
25 May 2017	Ellalong. Swift Parrots observed and no Regent Honeyeaters.
26 May 2017	Werakata SCA (Pelton). Swift Parrots observed and no Regent Honeyeaters.
30 May 2017	Singleton Military Area. Swift Parrots observed.
13 June 2017	Quorrobolong. Regent Honeyeater feeding on Spotted Gum.
28 June 2017	Hunter Economic Zone. Swift Parrot feeding on Spotted Gum.
29 July 2017	Hunter Economic Zone. Swift Parrot feeding on Grey Gum.
1 August 2017	Quorrobolong and Paxton. Regent Honeyeater and Swift Parrot feeding on Spotted Gum.
3 August 2017	Quorrobolong and Paxton. Regent Honeyeater feeding on Spotted Gum.
24 September 2017	Capertee Valley. Regent Honeyeater feeding on Yellow Box.
28 September 2017	Capertee Cottage. Regent Honeyeater feeding on mistletoe in River Sheoak.

4 October 2017 Glen Alice, Capertee Valley. Regent Honeyeater feeding on Mugga Ironbark and Yellow Box.

The location of recent Regent Honeyeater and Swift Parrot sightings in the lower Hunter, as outlined in **Table 8**, are consistent with the modelled area of high value habitat within this region (i.e. the Quorrobolong – Paxton – Kitchener – Kurri Kurri area) (Birdlife Australia 2013). The same habitat modelling indicates the Black Hill area as being located within an area of low to moderate value for the Regent Honeyeater and Swift Parrot.

Since 2017 there are have been two additional records of Swift Parrots (both within 2018) and three of Regent Honeyeaters (all within 2018) within 10 km of the subject site based on verified BioNet sighting records.

The site is not mapped on the important areas mapping for the Swift Parrot or Regent Honeyeater.

Herpetofauna

Four reptiles and two amphibians were detected within the subject site. All species observed were common species that included: Lace Monitor (*Varanus varius*), Red-bellied Black-snake (*Pseudechis porphyriacus*), Bearded Dragon (*Pogona barbata*), Eastern Water Dragon (*Intellagama lesueurii*), Common Eastern Toadlet (*Crinia signifera*) and Stripped Marsh Frog (*Limnodynastes peronii*).

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL FIGURE 9: HOLLOW BEARING TREE SURVEY

Legend

- Hollow Bearing Tree
- Hollow >20cm (Refer to Section 6.2)Watercourse
- Subject Site
- - Cadastral Boundaries

125

250

500

Meters

1:7,500

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 2 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

Legend

- Grey-Crowned Babbler
- Masked Owl
- Bats: Large-eared Pied, Little Bent-winged, Eastern Bent-winged, Eastern Coastal Free-tailed, Yellow-bellied Sheath-tailed \land
- Bats: Little Bent-winged, Eastern Bent-winged, Eastern Coastal Free-tailed, Yellow-bellied Sheath-tailed \bigtriangledown
- Watercourse
- Subject Site
- Study Area
 - Cadastral Boundaries

125

250

500

Meters

1:7,500

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 2 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

7 Matters of National Environmental Significance

An EPBC Act Protected Matters Search (accessed 19-07-2018) was undertaken to generate a list of those Matters of National Environmental Significance (MNES) from within 10 km of the Site. An assessment of those MNES relevant to biodiversity has been undertaken in accordance within EPBC Act Policy Statement 1.1 Significant Impact Guidelines Matters of National Environmental Significance (DoE, 2013). The Matters of National Environmental Significance protected under national environment law include:

- Listed threatened species and communities;
- Listed migratory species;
- Ramsar wetlands of international importance;
- Commonwealth marine environment;
- World heritage properties;
- National heritage places;
- The Great Barrier Reef Marine Park;
- Nuclear actions; and
- A water resource, in relation to coal seam gas development and large coal mining development.

Listed Threatened Species and Communities:

A total of 73 threatened species and 5 threatened ecological communities listed under the EPBC Act have been recorded on the protected matters search. A likelihood of occurrence assessment for these MNES has been completed in **Appendix F**.

Threatened Species

Fifteen threatened birds, eight mammals, one reptile, five frogs, and twenty-one plants were recorded on the protected matters search. Of these, eight species were considered to have the potential to utilise the habitats within the development site:

- Anthochaera phrygia (Regent Honeyeater)
- Lathamus discolor (Swift Parrot)
- Pteropus poliocephalus (Grey-headed Flying-fox)
- Cynanchum elegans (White-flowered Wax Plant)
- Eucalyptus glaucina (Slaty Red Gum)
- Grevillea parviflora subsp. parviflora (Small-flower Grevillea)
- Rutidosis heterogama (Heath Wrinklewort)
- *Tetratheca juncea* (Black-eyed Susan)

Formal targeted surveys carried out as part of the BAM methodology and in accordance with the DEWHA (2010) *Survey Guidelines for Australia's threatened birds* specifically the Regent honeyeater and Swift Parrot, did not record any of the above species, and no habitat on the study area is critical to their survival.

This assessment concluded that the proposal is unlikely to impact the listed threatened species.

No Threatened Ecological Communities listed under the EPBC Act have been recorded within the study area.

Listed Migratory Species:

The protected matters search nominated 30 migratory species or species habitat that may occur with the 10km site buffer search area. No listed migratory species were observed on site. The assessment contained in **Appendix F** concluded that, no habitat on the study area is critical to their survival. Therefore, it is unlikely that the proposal over the study area will impact migratory species.

Wetlands of International Significance (declared Ramsar wetlands):

The site is not a wetland of international significance or declared Ramsar wetland. The protected matters search nominates the following wetland of international importance:

Pambalong Wetland

The Pambalong Wetland is approximately 3 km from the study area. The wetland forms part of the Hexham Swamp and is an integral part of a chain of wetland reserves that includes the internationally significant Ramsar-listed Hunter Estuary Wetlands. Several threatened bird species visit the reserve, including the black-necked stork, magpie goose, freckled duck, painted snipe and comb-crested jacana. Migratory wader species listed under international treaties have also been recorded on the reserve (NSW NPWS 2006).

Hunter Estuary Wetlands

The Hunter Estuary Wetland Ramsar site is approximately 13 km from the study area. The wetlands supports 112 species of waterbirds and 45 species of migratory birds listed under international agreements, including the white-bellied sea-eagle (*Haliaeetus leucogaster*), and the green and golden bell frog (*Litoria aurea*) listed as vulnerable under the EPBC Act. The Hunter Estuary wetlands also provide refuge for waterbirds such as ducks and herons during periods of inland drought. The wetland supports 1% of the population of the eastern curlew (*Numenius madagascariensis*) and the red-necked avocet (*Recurvirostra novaehollandiae*).

Commonwealth Marine Areas:

The site is not part of a Commonwealth Marine Area and is not in close proximity to any such area.

World Heritage Properties:

The site is not a World Heritage area and is not in close proximity to any such area.

National Heritage Places:

The site is not a National Heritage area and is not in close proximity to any such area.

Great Barrier Reef Marine Parks:

The site is not part of or within close proximity to any Great Barrier Reef Marine Park.

Nuclear Actions:

The proposal over the site is not and does not form part of a Nuclear action.

Water Resources in relation to Coal Mining and CSG:

The proposal over the site is related to residential development and as such is not or does not form part of a coal mining and/or CSG proposal.

<u>Summary</u> - In summary, the proposed action is unlikely to have an impact to MNES based on the assessment criteria set out in relevant Commonwealth policies and advices as at the time of this assessment. Notwithstanding a referral will be made for the proposal under the EPBC Act.

8 SEPP 44 -Koala Habitat Protection

Assessment of potential koala habitat under SEPP 44 requires the following steps be undertaken:

- (a) Identification of 'potential Koala habitat' within the site area to be impacted; if the total tree cover contains 15% or more of the Koala food tree species listed in Schedule 2 of SEPP 44 then it is deemed to be 'potential Koala habitat'. Identification of 'potential Koala habitat requires the determination of the presence of 'core Koala habitat';
- (b) Identification of 'core Koala habitat' within the area to be impacted. 'Core Koala habitat' is defined as an area of land with a resident population of Koalas, evidenced by attributes such as breeding females (females with young), recent sightings and historical records of a Koala population;
- (c) Identification of 'core Koala habitat' will require that a plan of management must accompany the application;
- (d) If the rezoning of lands, other than to environmental protection, involves potential or core Koala habitat then the Director of planning may require a local environmental study be carried out.

Two tree species listed in Schedule 2 of the SEPP as a 'Koala Feed Tree Species' occurs on the site, being *Eucalyptus punctata* (Grey Gum) and *Eucalyptus tereticornis* (Forest Red Gum).

At no point where Koala feed trees persist on site do they represent 15% or more of the total tree cover. Additionally, investigations did not detect Koalas or signs of Koalas within the study area. Therefore, the vegetation on the site does not constitute Potential or Core Koala Habitat.

Determination of SEPP (Koala Habitat Protection)

At the time of Development Application submission (August 2018) of the development application for the site, SEPP No.44 – Koala Habitat Protection was in force. There have been multiple iterations of this SEPP (Koala Habitat Protection) in the recent years. The following text investigates the appropriate SEPP version for the assessment of the site with respect to the Koala.

The SEPP 44 – Koala Habitat Protection commenced on 13th February 1995 and was the original legislation for the protection of Koala Habitat.

The SEPP (Koala Habitat Protection) 2019 commenced on 1st March 2020. At that time of gazettal, SEPP 44 – Koala Habitat protection was repealed under Part 5 of SEPP (Koala Habitat Protection) 2019.

The SEPP (Koala Habitat Protection) 2020 commenced on 30th November 2020. At that time of gazettal SEPP (Koala Habitat protection) 2019 was repealed under Part 5 of SEPP (Koala Habitat Protection) 2020.

The SEPP (Koala Habitat Protection) 2021 commenced on 17 March 2021. Part 4 of the SEPP introduced savings and transition arrangements and amendments to SEPP (Koala Habitat Protection) 2020 were made by Schedule 3.

With regard to the savings and transition arrangements of SEPP (Koala Habitat Protection) 2021, for development consent under Part 4 of the EP&A Act, the following criteria apply to the site:

- Part 4, Section 18 Existing development applications A development application made in relation to land, but not finally determined before this Policy applied to the land, must be determined as if this Policy had not commenced in its application to the land; and
- SEPP (Koala Habitat Protection) 2021 applied from the 17th March 2021.

On this basis, SEPP (Koala Habitat Protection) 2021 does not apply to the current development application over the site as it was lodged prior to 17th March 2021, specifically August 2018. Therefore, the development application is to be assessed under the provisions of SEPP (Koala Habitat protection) 2020.

Evaluation of Original Koala Assessment Against SEPP (Koala Habitat Protection) 2020

SEPP (Koala Habitat Protection) 2020 aims to encourage the proper conservation and management of areas of natural vegetation that provide habitat for koalas to ensure a permanent free-living population over their present range and reverse the current trend of koala population decline. It replicates the objectives and provisions of SEPP 44, which was in force from 1995 through to 2019.

Assessment of potential koala habitat under the Koala SEPP 2020 requires the following steps be undertaken:

Step 1) Identification of 'Potential Koala Habitat' within the site area to be impacted; if the total tree cover contains 15% or more of the Koala food tree species listed in Schedule 2 of SEPP (Koala Habitat Protection) 2020 then it is deemed to be 'Potential Koala Habitat'. Identification of 'Potential Koala Habitat' requires the determination of the presence of 'Core Koala Habitat'; and

Step 2) Identification of 'Core Koala Habitat' within the area to be impacted. 'Core Koala Habitat' is defined as an area of land with a resident population of Koalas, evidenced by attributes such as breeding females (females with young), recent sightings and historical records of a Koala population.

The assessment of the site for the initial BDAR was assessed against the provisions of SEPP 44 – Koala Habitat Protection as detailed above. This assessment determined:

Two tree species listed in Schedule 2 of the SEPP as a 'Koala Feed Tree Species' occurs on the site, being Eucalyptus punctata (Grey Gum) and Eucalyptus tereticornis (Forest Red Gum).

At no point were Koala feed trees persist on site do they represent 15% or more of the total tree cover. Additionally, investigations did not detect Koalas or signs of Koalas within the study area. Therefore, the vegetation on the site does not constitute Potential or Core Koala Habitat.

Therefore no further provisions of this policy apply to the site.

Summary

SEPP (Koala Habitat Protection) 2020 replicates the objectives and provisions put in place by SEPP 44, and carries the same provisions for the assessment of Koala Habitat.

The above assessment that initially informed the BDAR, assessed the site as not constituting Potential or Core Koala Habitat in accordance with the provisions of SEPP 44.

The assessment of Koala Habitat for the site has met the conditions of SEPP (Koala Habitat Protection) 2020 in reviewing Koala Habitat and remains valid for the assessment for the development application.

STAGE 2 - IMPACT ASSESSMENT

9 Avoid and Minimise Impacts

9.1 Biodiversity Values

Site Selection

The subject site was part of a planning proposal that received gateway on 11th December 2012 and a Draft LEP was received on 12th December 2016 with gazettal occurring on the 13th April 2017. The planning proposal assessed a land zoning change from RU2 Rural Landscape to IN1 General Industrial and E2 Environmental Conservation. This planning proposal sought to provide opportunity to develop the previously disturbed study area environs for an industrial development whilst conserving higher value native vegetation via appropriate environmental zoning.

The approved rezoning resulted in the study area being zoned and divided into:

- IN2 Light Industrial (177.79 ha)
- E2 Environmental conservation (57.6 ha)
- E4 Environmental Living (81.39 ha)

Note that the subject site also contains 8.32 ha of SP2 Special purpose inclusive of the existing infrastructure (John Renshaw Drive).

The flora and fauna assessment that informed the rezoning application (RPS 2013) provided an assessment of biodiversity values within the study area. This included an understanding of the locations of significant vegetation that were rezoned for conservation in perpetuity (E2 & E4).

The retained vegetation zoned E2 in the north of the site, includes Lower Hunter Spotted Gum Ironbark Forest (EEC) and Tall Alluvial Moist Forest that is regarded as riparian vegetation along Weakleys Flats Creek. This patch of vegetation and associated creek lines will provide a northern corridor for fauna movement, although John Renshaw Drive presents a hostile connection for many terrestrial and arboreal mammals continuing north. The retained vegetation in the south of the study area has been rezoned E4 and will result in further retention of Lower Hunter Spotted Gum Ironbark Forest (EEC) and Tall Alluvial Moist Forest. In addition, it will provide a corridor for fauna movement that links to vegetation in the northern areas of the Sugarloaf range.

Notably, the land to the east has been approved for a large employment lands development as part of the Coal & Allied Lower Hunter Lands – Black Hill site project (Major Project ref: MP10_0093). When developed, connectivity to the east of site will be severed. The neighbouring concept approval seeks to maintain a central north to south connection via a retained riparian zone. Continued east to west connectivity shall occur south of site within the Study Area to the neighbouring concept approval site.

The subject site for development was selected due to the largely cleared or highly degraded lands as a result of past and present land use. All vegetation is to be removed within the subject site with the exception of the south to north reach of an ephemeral riparian corridor situated in the north-west of the site. The alignment will be subject to realigned in areas and rehabilitation as part of the staged development works. (Note: for the purposes of impact assessment, this vegetation has been considered as lost, thus adding to the overall biodiversity liability, notwithstanding that areas of the riparian corridor that are not realigned will be retained).

The current layout of the industrial area has been developed in response to the rezoning of the study area and no further avoidance and mitigation measures have been considered, as the approval granted at the time of rezoning considered the conservation outcomes for the site and the proposed land usage to be sufficient to allow for the rezoning to be approved.

Refer to Figure 11 showing the Development Footprint.

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL FIGURE 11: DEVELOPMENT FOOTPRINT

Legend

- Watercourse
- Subject Site
- - Cadastral Boundaries
 - Development Footprint

125

250

500

Meters 1:7,500

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 2 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

9.2 Prescribed Biodiversity Impacts

The avoidance and minimising of impacts on prescribed biodiversity is a critical component of the BAM, as many of these biodiversity values are difficult to quantify, replace or offset.

The BC regulation (clause 6.1) identified actions that are prescribed as impacts to be assessed under the biodiversity offset scheme. Where these actions have been identified within the subject site and efforts have been made to avoid and minimise impacts, they have been addressed below:

Impacts of development on the connectivity of different areas of habitat of threatened species that facilitates the movement of those species across their range.

The development of the Industrial zoned parcel of land was designed to avoid impacts to larger higher quality patches of vegetation in the north and south of the study area during the planning proposal assessment process. The retention of these two parcels within the wider lands will provide connectivity across the landscape by facilitating movement for primarily highly mobile threatened species. Currently the vegetation to be retained in the north and south provides connection in an east-west direction. The southern parcel will continue to facilitate movement to adjacent vegetation that connects to the northern areas of the Sugarloaf Range. The connectivity in the northern parcel of retained vegetation will be restricted to highly mobile species with the construction and operation of the main entrance road to the development dividing the area into two areas. A culvert will be constructed over the 2nd order stream to allow for restricted terrestrial movements within the retained patch which will connect the western vegetation to the east and north via a second existing culvert under John Renshaw Drive.

Impacts of development on water quality, water bodies and hydrological process that sustain threatened species and threatened ecological communities.

During the rezoning assessment consideration was given to all water courses and the associated riparian corridors known to occur on the site, and an importance placed on the retention of these areas as part of the environmental conservation outcomes of the proposed rezoning. The gazetted LEP amendment has resulted in E2 lands to the north conserving the 2nd order water course - Weakleys Flats Creek and two ephemeral 1st order streams. In addition, the south to north reach of an ephemeral riparian corridor situated in the north-west of the site will be partially retained as part of the development with rehabilitation and re-alignment works to be carried out.

The southern E4 land that is part of the wider study area has additional watercourses retained that include a third order stream and associated riparian forest.

The two existing culverts which allow the passage of water across John Renshaw Drive by the one mapped Strahler 2nd order watercourse and one unmapped drainage lines (see **Figure 3**). These culverts will not be removed during the proposed road widening associated with the proposal, though the culverts may be impacted temporarily. Hydrological processes of the road corridor will not be impacted by the proposed works.

10 Unavoidable Impacts

The following section outlines potential direct and indirect impacts on biodiversity values and prescribed impacts associated with the proposal.

10.1 Direct Impacts

The construction and operation of the Black Hill Industrial Estate will result in the following direct impacts:

Removal of Native Vegetation

A total of 73.61 ha of native vegetation will be removed as part of the proposal (a total of 77.22 ha inclusive of managed roadside vegetation and planting not included in calculations). The following table provides a breakdown of area to be cleared by vegetation zone and the current and future vegetation integrity score (V.I).

Note: All vegetation is to be removed within the subject site with the exception of the south to north reach of an ephemeral riparian corridor situated in the north-west of the site. The alignment will be subject to realigned in areas and rehabilitation as part of the staged development works. (Note: for the purposes of impact assessment, this vegetation has been considered as lost, thus adding to the overall biodiversity liability, notwithstanding that areas of the riparian corridor that are not realigned will be retained).

Vegetation Zone	Condition	Threatened Ecological Community	Area (ha)	Current V.I Score	Future V.I Score		
1592: Spott	ed Gum - Red Iro	nbark - Grey Gum shrub - grass open	n forest of	the Lower H	unter		
VZ1	1592_High	Commensurate with Lower Hunter Spotted Gum Ironbark Forest of the Sydney Bioregion EEC.	22.13	67.3	0		
VZ2	1592_Moderate	Commensurate with Lower Hunter Spotted Gum Ironbark Forest of the Sydney Bioregion EEC.	29.04	49.7	0		
VZ3	1592_Low Grassland	No	2.64	14.9	0		
VZ4	1592_Low	Commensurate with Lower Hunter Spotted Gum Ironbark Forest of the Sydney Bioregion EEC.	17.53	45.4	0		
VZ5	1592_Low Scattered Trees	No	1.50	12.7	0		
1584: White and lower h	1584: White Mahogany - Spotted Gum - Grey Myrtle semi-mesic shrubby open forest of the central and lower Hunter Valley						
VZ6	1584_High	No	0.78	82.4	0		

Table 8 Direct Impacts on Native Vegetation

Candidate Species Credit Species and SAII

As part of the biodiversity assessment, it has been determined the proposal will:

- not impact any threatened species or ecological communities listed as a candidate Serious and Irreversible Impact entity in accordance with *Guidance to assist a decision-maker to determine a serious and irreversible impact* (OEH 2017b); and
- will not impact candidate Species Credit Species as no observations of these species were recorded during formal surveys within the subject site.

10.2 Indirect Impacts

The construction and operation of the Black Hill Industrial Development may result in the following indirect impacts described in **Table 9**.

Table 9 Potential Indirect Impacts

Impact	Extent	Frequency/duration	Duration	Threatened species or TEC likely to be affected	Consequence of the impact on bioregional persistence of the threatened species, TEC and/or habitat
Inadvertent impacts on adjacent habitat or vegetation	Limited	Unlikely – construction stage	During construction of each stage of development	 Lower Hunter Spotted Gum Ironbark Forest (EEC) Hollow bearing trees used by threatened species such as Forest Owls, birds and arboreal mammals (potential to occur) Grey Crowned Babbler (known to occur) 	 Minor risk of disturbance of genetic exchange between flora species Minor risk of disturbance to retained vegetation Minor risk of loss/disturbance to fauna habitat (hollows, nests, ground timber, foraging habitat) Minor risk of injury or mortality of fauna during clearing adjacent development site
Reduced viability of adjacent habitat due to edge effects	Limited	Unlikely – construction stage	Operational stage	 Lower Hunter Spotted Gum Ironbark Forest (EEC) Grey crown Babbler (known to occur) 	 The adjacent vegetation to the development site has already been impacted by weed incursion due to historic clearing and current land management practices. The likelihood of the vegetation reducing in viability will be minor at best, due to impacts currently associated with edge effect such as weeds, these will include:
				 Minor disturbance to native flora and fauna habitat along the boundary of retained vegetation and development site; 	
					 Increase degradation to the edge of the known EEC.
					 Increased edge effect may have a minor impact on accessibility to native vegetation for Grey Crown Babbler

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

Impact	Extent	Frequency/duration	Duration	Threatened species or TEC likely to be affected	Consequence of the impact on bioregional persistence of the threatened species, TEC and/or habitat
Reduced viability of adjacent habitat due to noise, dust or light spill Transport of weeds and	Immediate surrounds Immediate	On-going On-going	On-going during construction and operational stages During	 Forest Owls (foraging) Arboreal mammals (foraging) Grey-crowned Babbler Microbats All potential threatened avifauna that may forage in the adjacent habitat Lower Hunter Spotted Gum Ironbark Forest (EEC) 	 Alter fauna behaviour (breeding, roosting and movement) in the immediate locality Dust cover may impact function of flora species in adjacent vegetation Increased light in the locality impacting on nocturnal fauna movements. Mortality and degradation of adjacent vegetation from disease
pathogens from the site to adjacent vegetation	surrounds		construction particularly adjacent to the boundary	 Grey Crowned Babbler 	 Minor increase in weed presences, that will restrict native flora establishment and colonisation and native fauna movements; Minor risk of establishment of high threat weed that would degrade EEC Loss of fauna habitat
Increased risk of starvation, exposure and loss of shade or shelter	Immediate surrounds	Initial development stages	Construction stage only	 Lower Hunter Spotted Gum Ironbark Forest (EEC) Microbats Grey Crowned Babbler 	 Minor impact on EEC during construction by exposing edges of vegetation that were not accustom to loss of shade or direct environmental factors (increased wind, sunlight)
Loss of breeding habitat	unknown	Infrequent	During construction	 Grey Crown Babbler Microbats Any threatened entity that may utilise hollows 	 Temporary loss of breeding habitat such as hollows and nests
Increase in pest animal populations	Unknown	Infrequent	During construction	 Lower Hunter Spotted Gum Ironbark Forest 	 Minor increase in mortality of threatened fauna species due to pest animal presences.

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

Impact	Extent	Frequency/duration	Duration	Threatened species or TEC likely to be affected	Consequence of the impact on bioregional persistence of the threatened species, TEC and/or habitat
			and operation	 Grey Crowned Babbler All threatened species that may forage in the adjacent vegetation 	 Minor increase in EEC degradation associated with pest animals foraging on native flora species, ground disturbance and
					 Moderate risk of increasing weed presences within the EEC by acting as a vector of weed species.
					 Risk of pest animal population excluding threatened fauna due to favourable modification of vegetation (clearing)
Rubbish Dumping	Unknown	Unknown	Construction and Operational	 Lower Hunter Spotted Gum Ironbark Forest (EEC) 	 Moderate increase in rubbish dump into EEC due the industrial estate being public roads allowing 24hr access.
Erosion and sediment impacts to adjacent vegetation	Unknown	Infrequent pending mitigation measures	Construction and Operational	 Lower Hunter Spotted Gum Ironbark Forest (EEC) 	 Erosion and sedimentation impacts on EEC and riparian areas due to failed mitigation measures
Exposure of known soil contamination from development site into	Unknown	Infrequent	During construction	 Lower Hunter Spotted Gum Ironbark Forest EEC 	 Risk of contamination exposure impacting health of EEC reducing extent and quality;
adjacent lands					Note: A RAP (per SEPP 55) with independent auditor forms part of the project. The RAP will clean up all known contamination across the subject site.

10.3 Prescribed Biodiversity Impacts

The construction and operation of the Black Hill Industrial Estate may result in the following prescribed biodiversity impacts described below:

Occurrences of karst, caves, crevices and cliffs

There are no occurrences of karst, caves, crevices or cliffs within the subject site.

Occurrences of rock

There were no observed occurrences of rock outcrops within the subject site.

There are minor areas of surface rock present within the subject site adjacent to the northern boundary and adjacent to the southern boundary. These areas are minor and provided little habitat opportunity for threatened species predicted to occur on site.

Occurrence of Non-native vegetation

The subject site does contain non-native vegetation in the form of exotic pasture, the occasional exotic tree and non-indigenous planting works carried out as part of landscaping works around where dwellings were located. The non-native vegetation plantings may provide minor forage of blossom for highly mobile species such as Grey-headed Flying Fox.

Within the road corridor a perimeter of managed road verge exists which is dominated by exotic grasses and some regenerating endemic pioneer species (such as acacia species). This zone is unlikely to provide habitat for threatened flora and fauna species beyond those which are proliferated by disturbance.

Assessment of the impacts of development on the habitat of threatened species or ecological communities associated with human made structures

The proposed development will result in the removal of three human-made structures during the construction phase of the development. Each structure will be removed as part of the development of the associated stage the structure is located.

The human-made structures include: an abandoned laboratory in the south-west corner, a farm shed adjacent to the southern boundary and a house towards the north-west boundary. All structures are derelict and may provide habitat for roosting cave dwelling bats in the locality.

There are two listed threatened cave dwelling bats known to occur within the subject site, they are the Little Bentwing Bat (*Miniopterus australis*) and Eastern Bentwing Bat (*Miniopterus schreibersii oceanensis*). These two species are both known to roost in man-made structures such as those observed on the site.

These species have breeding requirements that include their maternity colonies requiring specific temperature and humidity. Such is this specific requirement, there are only 5 nursery sites/maternity colonies known in Australia for the Eastern Bent-wing Bat (OEH 2018c).

The targeted survey did not detect either of the Cave -dwelling bats utilising the human-made structures as maternity colonies, therefore records of this species in the locality are most likely in relation to foraging and roosting in the nearby area.

All impacts associated with the development on these structures will be limited to the immediate removal at the time of construction. Appropriate mitigation measures will be in place to ensure any utilisation of the structures prior to removal has been assessed and appropriate pre-clearance works are undertaken (Refer to **Section 13**). It is unlikely the proposal will have a significant impact on breeding and roosting habitat for these species in the locality.

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

Within the road corridor, all culverts were searched during the June 2021 survey. One of the culverts were found to not be suitable for microbat species based on the size and presence of obstructions to their entrances. The larger culvert allowing the movement of the mapped Strahler 2nd order watercourse, Weakleys Flat Creek, did not contain such obstructions and would be suitable for use by microbat species such as the BC Act listed vulnerable Southern Myotis (*Myotis Macropus*). However not signs of current use by microbats were observed and the absence of crevices within the culvert used during roosting noted. There are no records of the species occurring within the riparian zone of the watercourse or adjoining tributaries. Nor was the species recorded during targeted surveys of connecting watercourses. Therefore, it is unlikely that the species utilises the watercourse and the associated culvert structure.

All impacts to the culverts will be isolated to the time of development where the culverts will either be temporarily impacted by works but retained or alternately culvert works may be required if the road widening extends past the current road alignment. In which case the culverts will be extended rather than lost. Appropriate mitigation measures will be in place to ensure any utilisation of the structures prior to removal has been assessed and appropriate pre-clearance works are undertaken (Refer to **Section 13**). Therefore, it is unlikely that the proposal will significantly impact this species as suitable habitat will be retained.

Assessment of the impacts of development on the connectivity of different areas of habitat of threatened species that facilitates the movement of those species across their range

The construction and operation of the Black Hill Industrial Development will result in the removal of 77.22 ha of native vegetation which will reduce connectivity between areas of habitat surrounding the subject site. The site in its current form provides corridors for linking contiguous patches of vegetation in the west and south to patches of vegetation to the east and north of John Renshaw Drive.

The proposed removal of vegetation will impact on connectivity of habitat across the central area of the wider study area, with movement being restricted retained vegetation to the north and south of the subject site.

The northern patch of vegetation which is to be retained as E2 zoned lands is identified as a corridor for movement from the west to eastern and northern patches of vegetation in the locality. This area will be impacted by the construction and operation of the developments entrance road that will connect John Renshaw Dr to the development site by dissecting the retained vegetation. The road will require the construction of culverts over the 2nd order stream that will retain limited connectivity for terrestrial fauna movements across the site. This culvert is expected to be used by potential terrestrial fauna in the same manner as the existing culvert (Weakleys Flat Creek) under John Renshaw Drive.

The on-going operation of the road may increase impacts on the movement of highly mobile species such as birds and microbats, although it must be considered the high volume of traffic that currently utilise John Renshaw Drive would present an existing baseline risk to these species and their movements. The introduction of a lower speed road (entrance road) would be a minor increase on the potential impacts to these species.

Any connectivity for arboreal species is restricted in the northern vegetation with the connection severed by John Renshaw Drive which runs parallel to the northern boundary.

The eastern boundary has a hostile connection (for arboreal mammals) due to the high voltage power line that runs in a north-south direction, this connection to the east is present in the form of lower growing native and exotic vegetation for a width of approximately 50m. Furthermore, vegetation east of the powerline is the location of an approved sub-division that will result in the loss of all vegetation through to the M1 motorway, severing full eastern connectivity adjacent to subject site.

To the south, connectivity is via retained vegetation within land zoned E4 that was sub-divided from the subject site during the rezoning process for the wider study area. To the west is a large contiguous patch of vegetation that provides connection from the subject site to northern areas of the Sugarloaf Range.

The hostile connection to the north and further east of the site (the M1 motorway), currently restrict connectivity and movement to different areas of habitat to highly mobile threatened species. This restriction to connectivity will be increased by the required widening of the portion of the extant road between the western and eastern limits of the site (John Renshaw Drive). The impacts to connectivity within a landscape are anticipated to be negligible as continuous wooded vegetation will be retained immediately north of the site (within the road corridor) ensuring movement of fauna (such as arboreal mammals) across the landscape is not prevented by the loss of habitat.

During the survey effort carried out within the subject site, only the Grey Crowned Babbler was recorded: This species was recorded during RPS surveys and incidental observations by MJD Environmental. There was a notable lack of threatened species observed within the subject site particularly highly mobile threatened species, that would often utilise vegetation as foraging habitat at the very least.

It is recognised that the site vegetation would support highly mobile species moving across the landscape in particularly fauna species foraging on winter blossom species such as the dominant *Corymbia maculata* (Spotted Gum). Fauna that potentially would use the site in times of high

blossom include threatened species such as the Regent Honeyeater, Swift Parrot, and the Greyheaded Flying-fox. In addition, a number of other predicted threatened species would potentially use this site as a stepping-stone across the landscape for forage and roosting purposes. These species would include but not limited to large Forest Owls, woodland birds and Microchiropteran bats.

The development of the industrial estate will be a staged process thus reducing impacts upfront by staggering vegetation removal, providing fauna opportunity to progressively alter movement patterns across the landscape.

The rezoning of lands to the north and south of the subject site will continue to provide corridors that will facilitate movement for highly mobile threatened species across the wider study area during construction and operation of the industrial estate. Thus, it is unlikely the proposal will have a significant impact on connectivity of areas of habitat for highly mobile threatened species in the locality.

Assessment of the impacts of the development on movement of threatened species that maintain their life cycle

The proposed development will result in the removal of 77.22 ha of native vegetation that may be relied upon by threatened species to maintain their life cycle. Any threatened species that were assessed to potentially use the site due to habitat suitability (primarily foraging) are generally highly mobile species, that will utilise corridors in the locality through retained vegetation to the north and south of the subject site. Thus, it is unlikely the proposal will have a significant impact on movement of highly mobile threatened species that maintain their life cycle in the locality.

Assessment of the impacts of development on water quality, water bodies and hydrological processes that sustain threatened species and threatened ecological communities

The proposed development of the subject site will result in the part-removal of an ephemeral first order stream and the realignment and rehabilitation of the northern portion of the stream. The removal and modification works proposed are not expected to substantially alter hydrological processes on threatened species or threatened ecological communities that may utilise the stream within or outside of the subject site.

Any works proposed adjacent to or within the stream will be carried in a manner that will limit any pollutants or sediments from entering the catchment by implementing sediment and erosion control protocols, that will be developed as part of an approved Construction and Environmental Management Plan (CEMP). Therefore it is unlikely the proposal will have a significant impact on water quality, water bodies and hydrological processes that sustain threatened species and threatened ecological communities.

Assessment of the impacts of vehicle strikes on threatened species of animals or on animals that part of a TEC

The proposed development will increase vehicle movements within the subject site, due to the proposed usage as an industrial development hub. The western entrance road to the site passes through the retained vegetation corridor in the north. The entrance will become a high use area, and due to the operational hours extending into the evening, this road could potentially increase vehicle strike for threatened diurnal and nocturnal fauna that may use the corridor as a place to forage and roost during movements through the locality. The complete removal of vegetation within the industrial estate will limit any potential for vehicle strikes, as there will be no vegetation to facilitate movement coupled with the estate being illuminated by street and building lights during evening.

The site is adjacent to high traffic artillery roads such as John Renshaw Dr and the begin of the M1 Motorway, therefore the construction and operation of the industrial estate will not substantially increase the risk of vehicle strike on threatened species. Coupled with the implementation of mitigation measures that may reduce the chance of vehicle strike appropriate speed limits, it is unlikely the proposal will have a significant impact on highly mobile threatened species in the locality.

11 Impact Mitigation and Minimisation Measures

The following section outlines general mitigation measures required to manage impacts associated with the construction and operation of the Black Hill Industrial Estate. All mitigation measures propose to manage impacts that include techniques, timing, frequency and responsibility for implementing each measure.

Table 10 Mitigation Measures

Mitigation Measures	Responsibility	sponsibility Action		
Direct Impacts				
Human Made Structure				
		An experienced ecologist is to undertake the following tasks prior to and during removal of structures on site:	Prior to and during the removal of structures	
		 Pre-clearance survey of the structures within 7 days of their removal to determine if any microbats are within the structures; 		
Pre-clearance and supervision of structure removal for microbats.	Project Ecologist	 Where microbats are observed, measures restrict bats re-entering the buildings following departure for evening foraging to be employed prior to clearing of structures; 		
		 Structures to be inspected on the morning of demolition occurring. 		
		 Ecological supervision to be provided during removal of primary habitat areas including the roof and roof void. 		
		 Ecologist to be on-call and available for immediate mobilisation if additional microbats detected during demolition. Works to cease and ecologist direction sought. 		
Relocate resident fauna (except Microbats) in structures	Project Ecologist	A pre-clearance survey of all structures proposed to be removed for any resident fauna species	The day of structure removal.	
Vegetation Clearing (Staged)				
Demarcate stage clearing boundary	Surveyor	Installation of flicker tape along boundary, and any tree protection zones that may be required.	Prior to clearing works within the stage to be cleared	

Mitigation Measures	Responsibility	Action	Timing
Vegetation removal works are to occur outside core breeding periods for species known to use habitat on site wherever possible	Project ecologist in consultation with project manager	Construction Environmental Management Plan (EMP) to include a schedule for tree clearing during optimal months	Spring to Summer (Avoid late winter and early spring).
Identification of habitat and relocation of resident fauna	Project Ecologist	Tree pre-clearance survey completed up to 7-days prior to removal; No breeding fauna observed at time of clearing; If breeding threatened fauna observed stop works until breeding has been completed.	Prior to commencement of works for each stage
Identify and mark habitat trees	Project Ecologist	All habitat trees marked appropriately and determine fauna presences (utilisation)	Prior to commencement of woks for each stage Spring to Summer
Under scrubbing of vegetation and removal of non-habitat trees to occur in a sequence to allow for resident fauna to move to adjacent areas of habitat		CEMP to be developed to outline clearing plan for each stage, that includes fauna management	Prior to commencement of works for each stage
Habitat Tree Removal			
Hollow-bearing and habitat tree removal/clearing	Contractor and Project ecologist.	Supervision of habitat tree removal by qualified ecologist; Trees soft-felled or sectionally dismantled; All hollows to be visually inspected as each habitat trees is placed on ground and area safe to enter. Fauna welfare managed in accordance with ethics licencing.	During clearing works
Felled trees left in situ before stockpiling to allow for any fauna to move on	Contractors and Project ecologist	Trees left for a minimum of one night after felling, stockpiled within clearing boundary	After felling of hollow-bearing and habitat trees, prior to stockpiling

Mitigation Measures	Responsibility	Action	Timing
Retention of hollow tree resource	Contractors and Project ecologist	Wherever possible retain hollow-bearing tree resources as directed by site ecologist for reuse as terrestrial habitat in northern conservation zoned area.	During clearing works.
Indirect Impacts			
Retained Vegetation			
Establish Tree Protection Zones (TPZ) around retained habitat trees on the boundary of the development area	Contractor in consultation with project ecologist	TPZ is to 12xDBH in accordance with Australian Standards AS4970-2009 No go zone signs Fencing to include high vis bunting and star pickets Note : where encroachment of TPZ is required, an arborist should be consulted to determine individual structural root zone (SRZ) setbacks.	Prior to construction
Limit inadvertent impacts on retained vegetation in E2 and E4 lands	Contractor in consultation with project ecologist	Establish temporary fencing along interface of retained vegetation and development that will restrict impacts on retained vegetation	Fence to be installed prior to construction of each stage
Weeds, disease and edge effects	·		·
Develop a weed management protocol to be included in Construction Environment Management Plan (CEMP) for constructions period to limit degradation of interface of development and retained vegetation	Ecologist	Approved CEMP (Inc. weed management protocols) prior to construction of each stage	Prior to construction of each stage adjacent to retained vegetation
Equipment and vehicles entering Site are cleaned of foreign soil and seed prior to entering the site	Contractors	Best practice hygiene protocols followed, No visible foreign material, certification available upon request	Prior to machinery arriving on Site
Noise and light Impacts			·
Limit construction works to daylight hours to reduce impacts from light and noise	Construction contractor	No construction works to occur from dusk till dawn, unless required by other authorities such as RMS for road construction activities related to John Renshaw Drive and intersection works.	During construction works
All machinery is correctly maintained and operator as per operation manual	Construction contractor	No excessive noise of machinery due to poor maintenance or faulty parts	During construction works

Mitigation Measures	Responsibility	Action	Timing
Vehicles/machinery to observe 20km/h speed limit on Site	Contractors	No excessive dust	For the duration of Site works
Usage of water carters in dry periods to limit dust movement.	Construction contractor	No excessive dust is to cover retained adjacent vegetation	During construction
Pest animal			
Pest animal protocol to control any increases in pest animal population that may impact retained vegetation	Pest Animal contractor	Protocol approved as part of CEMP approval	During construction
Construction Period			
Erosion and sediment controls enacted in accordance with construction environment management plan (CEMP) to limit impacts on retained vegetation or riparian zones	Construction Contractor	CEMP followed & modified as needed	Prior to commencement of works, for duration of Site works
Establish Speed limits during construction and operation of the proposed development	Project Manager and Contractor	Low speed limits set to minimise vehicle strikes in particular the entrance road that dissects the northern retained vegetation corridor,	Prior to construction
Development of a Vegetation Management Plan to limit impacts to water course proposed to be retained in the development site (assessed as lost), this is to include vegetation impacts, water quality and rehabilitation schedule associated with the realignment and improvement works.	Project ecologist	Approved VMP (DPI Water NRAR)	Prior to construction or as required within approval documentation.
Biodiversity Management (Operation Perio	d)		
Development of Vegetation management Plan for retained vegetation in the north of the subject site	Project Ecologist	Development of Vegetation and Habitat Management Plan (VHMP) for the Management of biodiversity attributes within the site. VHMP is to include sections that address re-establishment of vegetation, weed control, on-going management, habitat augmentation and monitoring.	Approved by council prior to commencement of construction works

Mitigation Measures	Responsibility	Action	Timing
Re-establish vegetation on entrance road batters for future fauna movement	Project Ecologist	Development of VHMP (retained vegetation) with specifications that include: Tree re-establishment to decrease the distance between retained vegetation that in future will allow for arboreal movements across the entrance road (trees installation on batters must be approved by engineer). Vegetation re-establishment in accordance with appropriate PCT identified on site and proposed VHMP species list.	At the completion of entrance road construction
Establish periodically dry movement corridors within culverts to allow for terrestrial fauna movement	Civil contractor and Project Ecologist	During the design of under road culverts the establishment of terrestrial movement corridors should be considered to allow for terrestrial fauna movements from the west to the east through the culvert.	Included during the design of road culvert.
Evaluate the distance between canopies on either side of the entrance road to establish if post-clearing works would still allow for arboreal movements from west to east.	Project Ecologist	Determine the distance between appropriate trees and their canopy spread that would facilitate movement over the entrance road. If it is determined that the permanent distance following rehabilitation is greater than 35m, it is proposed to establish "fauna poles" for movement across the corridor. Rope ladders are not proposed. Specification should be in accordance with the RMS <i>Fauna Pole Specification</i> and an appropriate section included in the VHMP.	At the completion of the entrance road
Evaluate the number of hollows to be removed and ascertain an appropriate number of artificial hollows to install in northern vegetation	Project Ecologist	The project ecologist will determine the number of hollows to be replaced for hollow bearing trees and roosting structures based on an assessment of hollow bearing trees identified in the retained vegetation to the north. It is advised that hollow re-establishment should only occur in this vegetation if the current hollow density is low. Where possible repurposed hollows and logs from the development site should be utilised. Where this is not possible artificial nest boxes are to be used. A fauna habitat management section outlining hollow re-establishment will be included in the VHMP.	Assessment and VHMP to be approved prior to the commencement of clearing works.
Fauna exclusion from operational lands	Landowner	Fence between the development and retained vegetation will be a 2.4m (total height) chain mesh fence with a three-strand plain wire top or similar.	Installation at commencement of individual DA commencement.

12 Offset Requirements for Unavoidable Impacts

A summary of offset liabilities for the development of the Black Hill Industrial Estate on native vegetation are provided below:

An offset is required for all impacts of development on PCTs that are associated with:

- a vegetation zone that has a vegetation integrity score ≥15 where the PCT is representative of an endangered or critically endangered ecological community, or
- a vegetation zone that has a vegetation integrity score of ≥17 where the PCT is associated with threatened species habitat (as represented by ecosystem credits), or is representative of a vulnerable ecological community, or
- a vegetation zone that has a vegetation integrity score ≥20 where the PCT is not representative of a TEC or associated with threatened species habitat.

12.1 Ecosystem Credits

Table 11 Ecosystem Credits

Vegetation Zone	PCT ID	Area (ha)	Vegetation Integrity Score (V.I)	Vegetation Integrity Score (V.I) Ioss	Ecosystem Credits Required
VZ1_1592_High	1592	22.13	67.3	0	745
VZ2_1592_Moderate	1592	29.07	49.7	0	722
VZ3_1592_Low Grassland	1592	2.63	14.9	0	N/A
VZ4_1592_Low	1592	17.53	45.4	0	398
VZ5_1592_Low_Scattered Trees	1592	1.5	12.7	0	N/A
VZ6_1584_High	1584	0.78	82.4	0	24

12.2 Species Credit

Based on assessment within this BDAR, no Species Credits are required.

12.3 Areas not requiring Offsets

There is 105.68ha of exotic pasture and non-indigenous native plantings, as well as 3.17 ha of managed roadside vegetation, that will be impacted by the proposal. As this vegetation does not align with native vegetation and therefore PCT determination, they do not require offsetting or further assessment.

12.4 Credit Summary

The following **Table 12** displays the required Biodiversity Offset Liability based on the BAM-Calculator, and **Figure 12** depicts offset requirements.

Table 12 Biodiversity Liability Credit Summary

Ecosystem Credits	Offset Credits required
PCT 1592: Spotted Gum - Red Ironbark - Grey Gum shrub - grass open forest of the Lower Hunter	1,865
PCT 1584: White Mahogany - Spotted Gum - Grey Myrtle semi-mesic shrubby open forest of the central and lower Hunter Valley	24

12.5 Staged Credit Retirement

The development will be delivered in stages. It is proposed to stage the retirement of credits to achieve the required biodiversity credit liability, where the liability will be scheduled according to the Staging and Clearing Plan (**Appendix B**). The total number of credits to be retired for each stage of the development shall be pro rata based on a credit / ha (of impact) calculation.

To ensure sufficient credits are retired for each stage of development, credit liability has been rounded to the nearest whole number where credit totals are for a portion of a credit. Due to the rounding up of PCT 1592 credits per stage of development, there will be a shortfall of 1 credit if each stage is retired as per the above table. The last stage (Roadside JRD) of the development will require an additional credit to be retired to ensure the total biodiversity offset liability of 1865 credits for PCT1592 are retired (Refer **to Appendix B**).

The current method to retire credits for the proposal has not been determined and will be dependent on the availability of credits on the open market, viability of establishing a stewardship site in the locality or retirement of credits via payment into the Biodiversity Conservation Fund. It is likely that credit retirement will incorporate a combination of these options as the development is delivered.

BLACK HILL INDUSTRIAL DEVELOPMENT, BLACK HILL FIGURE 12: OFFSET REQUIREMENTS

Legend

- Watercourse
- Subject Site
- Study Area
 - Cadastral Boundaries
 - Areas Not Requiring Assessment
 - Impacts Not Requiring Offsets
 - Impacts Requiring Offsets

250

125

500

Meters

1:7,500

MJDEnvironmental

Aerial: Nearmap (2021) | Data: MJD Environmental, ADW Johnson (2021), LPI (2019) | Datum/Projection: GDA 1994 MGA Zone 56 | Date: 23/06/2021 | Version 2 | GIS\17032 - Lot 1131 DP 1057179 Black Hill Road, Black Hill\5. GIS | This plan should not be relied upon for critical design dimensions.

13 Conclusion

MJD Environmental has been engaged by Barr Property & Planning on behalf of Broaden Management Pty Ltd, to prepare a Biodiversity Development Assessment Report (BDAR) for the construction and operation of the Black Hill Industrial Estate. The BDAR has been prepared and finalised as of June 2019 with additional areas assessed in response to matters raised during Land and Environment Court Proceedings in June 2021. It should be noted that this additional assessment has been included herein however the initial lodgement is still current and therefore no alterations to amended legislation which has occurred within the interim has been made. This BDAR accompanied an Environmental Impact Statement (EIS) seeking consent for the industrial development over part Lot 1131 DP 1057179, Black Hill Rd, Black Hill NSW and the adjoining 2 km length of road corridor along John Renshaw Drive being the subject of this review.

In addition, preliminary assessment was also undertaken having regard to those threatened entities listed under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act).

The Biodiversity Assessment Methodology 2017 (BAM) was used as the assessment method, as the current assessment method at the time of lodgement (it has subsequently been superseded by BAM 2020). BAM 2017 was used to establish impacts on threatened species and threatened ecological communities in the locality under the *Biodiversity Conservation Act* 2016.

The proposed development site was part of a planning proposal that received gateway on 11th December 2012 and a Draft LEP was received on 12th December 2016 with gazettal occurring on the 13th April 2017. The planning proposal assessed a land zoning change from RU2 Rural Landscape to IN1 General Industrial and E2 Environmental Conservation. This planning proposal sought to provide opportunity to develop the previously disturbed study area environs for an industrial development whilst conserving higher value native vegetation via appropriate environmental zoning.

The current conditions on site are evidence of the past land uses. The previous use as a commercial poultry farm is evident in large areas of cleared exotic pasture where sheds were once located. Currently the site is continuing to be grazed limiting native vegetation to re-establish across the central area of the site.

Field Assessments carried out as part of the biodiversity assessment identified the following Plant Community Types (PCT):

- 72ha of varying condition PCT 1592: Spotted Gum Red Ironbark Grey Gum shrub grass open forest of the Lower Hunter which is commensurate with the listed Endangered Ecological Community Lower Hunter Spotted Gum Ironbark Forest of the Sydney Basin; and
- 7,800m² of PCT 1584: White Mahogany Spotted Gum Grey Myrtle semi-mesic shrubby open forest of the central and lower Hunter Valley.

Targeted surveys for all flora and fauna candidate species recognised to have potential to occur within the subject site have been carried out by MJD Environmental (2018 & 2019) and have also utilised surveys undertaken by RPS (2017) as part of the works informing this BDAR.

The following threatened species were observed or recorded during survey works:

- Grey Crowned Babbler Pomatostomus temporalis temporalis (Ecosystem Credit Species)
- Grey-headed Flying Fox *Pteropus poliocephalus* was also observed flying over and foraging on blossom (Dual Credit species) no camp was observed on site; and
- Little Bentwing Bat (*Miniopterus australis*), Eastern Bentwing Bat (*Miniopterus schreibersii oceanensis*), both are dual Credit Species. The site was assessed as to have no maternity colonises present, so these species were accounted for as Ecosystem Credit Species.
- East-coast Freetail Bat (Mormopterus norfolkensis), Yellow-bellied Sheath-tailed Bat (Saccolaimus flaviventris) (Ecosystem Credit Species).

- Large-eared Pied Bat (*Chalinolobus dwyeri*) is a species Credit Species, however detailed assessment has determined no breeding/ roosting habitat on site for this species;
- Masked Owl (*Tyto novaehollandiae*) (Dual Credit species), this species was not observed to be breeding in the subject site at the time survey thus has only been account for as an Ecosystem Credit Species.

Impact Avoidance & Mitigation

A package of avoidance and mitigation measures have been described in this BDAR associated with the project.

The subject site for development was selected due to the largely cleared or highly degraded lands as a result of past and present land use. All vegetation is to be removed within the subject site with the exception of the south to north reach of an ephemeral riparian corridor situated in the north-west of the site. The alignment will be subject to realigned in areas and rehabilitation as part of the staged development works. (Note: for the purposes of impact assessment, this vegetation has been considered as lost, thus adding to the overall biodiversity liability, notwithstanding that areas of the riparian corridor that are not realigned will be retained).

The current layout of the industrial area has been developed in response to the rezoning of the study area and no further avoidance and mitigation measures have been considered, as the approval granted at the time of rezoning considered the conservation outcomes for the site and the proposed land usage to be sufficient to allow for the rezoning to be approved

All measures have been incorporated into the design (avoidance) in the first instance with mitigation measures assessed for the construction and operational phases of the project.

Impact Analysis

The proposal will result in following impacts and required offsets as calculated using the BAM-C Calculator:

- 67.28ha of PCT 1592 requiring 1,865 ecosystem credits; and
- 0.78 ha of PCT 1584 requiring 24 ecosystem credits to offset the loss under the NSW Biodiversity Offsets Scheme

There is no requirement to offset:

- 4.14 ha of PCT 1592 that was assessed to have a Vegetation Integrity score <15:
- 105.24 ha of pasture; and
- 4,400m² of non-indigenous planting
- 3.17 ha of managed roadside vegetation

The development will be delivered in stages. It is proposed to stage the retirement of credits to achieve the required biodiversity credit liability, were the liability will be scheduled according the Staging and Clearing Plan. The total number of credits to be retired for each stage of the development shall be pro rata based on a credit / ha (of impact) calculation.

The current method to retire credits for the proposal has not been determined and will be dependent on the availability of credits on the open market, viability of establishing a stewardship site in the locality or retirement of credits via payment into the Biodiversity Conservation Fund. It is likely that credit retirement will incorporate a combination of these options as the development is delivered.

A preliminary assessment under the EPBC Act determined the proposed action is unlikely to have an impact to MNES based on the assessment criteria set out in relevant Commonwealth policies and advices as at the time of this assessment.

14 Bibliography

Botanical Gardens Trust 2017 - *Plantnet*- The Plant Information Network System of The Botanic Gardens Trust, Sydney, Australia. Accessed June, July, August 2018 and March 2019.

Cockerill, A., Harrington, S and Bagel, T. 2013 *Lower Hunter Vegetation Mapping.* Report funded by the department of Sustainability, Environment, Water, Population and Communities though the Sustainable Regional Development Program. Parsons Brinkerhoff, Canberra

Commonwealth of Australia (2016) *National Recovery Plan for the Regent Honeyeater (Anthochaera phrygia)*. Canberra, ACT: Department of Environment. In effect under the EPBC Act from 04-May-2016 as *Anthochaera Phrygia*

Cropper (1993) Management of Endangered Plants. CSIRO Publications, East Melbourne, Victoria

Department of the Environment and Energy (2018a): *Commonwealth Biodiversity: Species Profile and Threats Database (SPRAT)* - <u>http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl</u> (accessed July 2018)

Department of the Environment and Energy (2018b); *Flying Fox Monitoring Viewer* <u>http://www.environment.gov.au/webgis-framework/apps/ffc-wide/ffc-wide.jsf</u> (Accessed July 2018)

Department of the Environment, Water, Heritage and the Arts (2010) *Survey guidelines for Australia's threatened birds.* DEWHA, Canberra ACT.

Department of Environment and Conservation (2006b) Recovery Plan for the Large Forest Owls: Powerful Owl (Ninox strenua), Sooty Owl (Tyto tenebricosa) and Masked Owl (Tyto novaehollandiae). Department of Environment and Conservation, Sydney.

eBird (n.d.) Species maps database (amateur sightings uploaded to an interactive map). https://ebird.org/map/

Harden, G.J. (Ed) (1992) *Flora of New South Wales. Volume 3.* Royal Botanical Gardens Sydney & New South Wales University Press, Sydney

Harden, G.J. (Ed) (1993) *Flora of New South Wales. Volume 4.* Royal Botanical Gardens Sydney & New South Wales University Press, Sydney

Harden, G.J. (Ed) (2000) *Flora of New South Wales. Volume 1.* Royal Botanical Gardens Sydney & New South Wales University Press, Sydney

Harden, G.J. (Ed) (2002) *Flora of New South Wales. Volume 2.* Royal Botanical Gardens Sydney & New South Wales University Press, Sydney

Mitchell, P.B. (2002). *Descriptions for NSW (Mitchell) Landscapes Version 2*. Prepare for the NSW National Parks and Wildlife Service, Hurstville.

Naylor, SD, Chapman, GA, Atkinson, G, Murphy CL, Tulau MJ, Flewin TC, Milford HB, Morand DT, 1998, *Guidelines for the Use of Acid Sulfate Soil Risk Maps*, 2nd ed., Department of Land and Water Conservation, Sydney.

NSW National Parks and Wildlife Service (2006) Pambalong Nature Reserve Plan of Management. Department of Environment and Conservation (NSW)

NSW OEH (2018a) BioNet Vegetation Information System: Classification Database. Accessed online at http://www.environment.nsw.gov.au/research/Visclassification.ht (Accessed June 2018)

NSW OEH (2018b) NSW Bionet. Threatened Biodiversity Data Collection Accessed online – <u>http://www.bionet.nsw.gov.au/</u> (accessed July 2018, Feb 19, May 19)

NSW OEH (2018c) Threatened Species Profile Search - <u>http://www.environment.nsw.gov.au/threatenedSpeciesApp/</u> (accessed July 2018, Feb 19)

NSW OEH (2018d) *Biodiversity Assessment Method Operational Manual- Stage 1* Office of Environment and Heritage for the NSW Government, Sydney, NSW.

NSW OEH (2018e) "Species credit" threatened bats and habitats: NSW Survey guide for the *Biodiversity Assessment Method.* September 2018, Office of Environment and Heritage for the NSW Government, Sydney, NSW.

NSW OEH (2017a) Biodiversity Assessment Methodology (BAM). Office of Environment and Heritage for the NSW Government, Sydney, NSW.

NSW OEH (2017b) Guidance to assist a decision-maker to determine a serious and irreversible impact, NSW Government

NSW OEH (2016) *NSW Guide to Surveying Threatened Plants* Office of Environment and Heritage (OEH) February 2016, Office of Environment and Heritage for the NSW Government, Sydney, NSW.

Thackway. R., Cresswell. I.D. (1995) *An Interim Biogeographic Regionalisation for Australia.* Reserve Systems Unit, Australian nature Conservation Agency

Pizzey, G. and Knight, F. (2007) *The Field Guide to the Birds of Australia*. Harper Collins Publishers, Sydney.

Robinson, M. (1998) A field Guide to Frogs of Australia. Reed New Holland, Sydney.

RPS Group (2013) and Fauna Assessment Lot 1131 DP 1057179 Black Hill Road, Black Hill RPS Group, Broadmeadow, NSW

RPS (2011). *Ecological Assessment Report – Lower Hunter Lands: Black Hill.* Report prepared for Coal & Allied Industries (for Major Project MP10_0093)

RPS Group (2017a) *Biodiversity Assessment Report: Black Hill Industrial Development.* RPS Group, Broadmeadow, NSW

RPS Group (2017b) *Black Hill Industrial Development: Biodiversity Inventory Report*, RPS Group, Broadmeadow, NSW

Strahan, R. (2004) The Mammals of Australia. New Holland Publishers, Australia.

Simpson. K, and Day. N. (2010) *Field Guide to the Birds of Australia*. Penguin Group, Australia. Sivertsen, D., Roff, A., Somerville, M., Thonell, J., and Denholm, B. 2011. Hunter Native Vegetation Mapping. Geodatabase Guide (Version 4.0), Internal Report for the Office of Environment and Heritage, Department of Premier and Cabinet, Sydney, Australia.

Sommerville (2009) Hunter, Central & Lower North Coast Vegetation Mapping Classification and Mapping Project. Volume 1 Vegetation Classification Technical Report. Volume 2 Vegetation Community Profiles, Volume 3 Vegetation Survey Data Audit.

Strahan, R. (2004) The Mammals of Australia. New Holland Publishers, Australia.

Tyler, M. J. and Knight. F. (2011) *Field Guide to the Frogs of Australia*. Revised Edition. CSIRO Publishing, Australia.

Williams E.R and Thomson B. (2018) Aspects of the foraging and roosting ecology of the large-eared pied bat (*Chalinolobus dwyeri*) in the western Blue Mountains, with implications for conservation. Australian Mammology CSIRO Publishing 13 December 2018.

Appendix A

Plan of Proposal

Appendix B

Staging and Clearing Plan and Staged Credit Retirement

PCT 1592								
Proposed Clearing	Total Clearing Area (ha)	Total Credit req'd to retire (Total Credit req'd to retire (Rnd)					
Road A	20.94	218.42	218					
Road B	0.99	10.33	10					
Road C	0.99	10.33	10					
Road D	1.18	12.31	12					
Road E	1.17	12.20	12					
Inf A	1.07	11.16	11					
Inf B	0.54	5.63	6					
Inf C	0.54	5.63	6					
Inf D	1.43	14.92	15					
Inf E	5.5	57.37	57					
Inf F	1.49	15.54	16					
Inf G	0.21	2.19	2					
Inf H	0.87	9.07	9					
Inf I	0.45	4.69	5					
Inf J	0.85	8.87	9					
Buff A	5.55	57.89	58					
Buff B	6.46	67.38	67					
Buff C	2.83	29.52	30					
Buff D	3.26	34.00	34					
Buff E	3.6	37.55	38					
Buff F	3.02	31.50	32					
Buff G	1.89	19.71	20					
Stage A	8.97	93.56	94					
Stage B	17.57	183.27	183					
Stage C	6.85	71.45	71					
Stage D	11.36	118.49	118					
Stage E	2.72	28.37	28					
Stage F	17.08	178.16	178					
Stage G	23.8	248.25	248					
Stage H	6.22	64.88	65					
Stage I	4.83	50.38	50					
Stage J	12.34	128.71	129					
Roadside (JRD)	2.23	23.26035	24					
Total	181.97		1865					

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

PCT 1584									
Proposed Clearing	Total Clearing Area (ha)	Total Credit	Total Credit (Rnd Up)						
Road A	0.78	24	24						
Total	0.78	24	24						

*Road A totals 20.94ha. Credits to be retired for the construction of Road A has been divided into the two PCTs as Road A has all the required PCT 1584 credits (24) to be retired.

** Due to the rounding up of PCT 1592 credits per stage of development, there will be a shortfall of 1 credit if each stage is retired as per the above table. The last stage (Roadside JRD) of the development will require an additional credit to be retired to ensure the total biodiversity offset liability of 1865 credits for PCT1592 are retired.

Appendix C

BAM Plot Data

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

MIDEnvironmental

Function									
itter ove	Log s	Tree Ste m 5- 10	Tree ste m 10 - 20	Tree Ste m 20 to 30	Tree Ste m 30 to 50	Tree Ste m 50 to 80	Tree Rege n	H.T. E	
59.0	40.0	1	1	1	1	1	0	3.0	
37.0	6.0	1	1	1	1	1	1	12.1	
27.0	19.0	1	1	1	1	1	1	43.2	
56.0	7.0	1	1	1	1	1	1	41.8	
69.0	26.0	1	1	1	1	1	1	15.3	
6.0	36.0	1	1	1	1	1	1	0.9	
67.0	43.0	1	1	1	1	0	1	6.1	
17.0	0.0	0	0	0	0	0	0	0.4	
38.6	29.0	1	1	1	1	0	1	0.2	
76.0	53.0	1	1	1	1	1	0	1.4	
50.0	24.0	1	1	1	1	1	1	61.8	
39.0	18.0	1	1	1	1	1	0	30.2	
69.0	31.0	0	1	1	1	1	0	10.4	
67.0	17.0	0	1	1	1	1	0	10.6	
68.0	16.0	0	1	1	1	0	0	50.5	
15.0	0.0	0	0	0	0	0	0	15.9	
29	11	1	1	1	1	1	1	36	
67.0	42.0	1	1	1	1	0	0	1.9	
61.0	19.0	0	1	1	1	0	0	10.9	
57.0	14.0	1	1	1	1	0	0	30.5	
64.0	45.0	1	1	1	1	1	1	55.1	
1.2	11.0	0	0	0	0	1	0	90.0	
18.0	4.0	1	1	1	1	1	1	16.6	
94.0	13.0	1	1	1	1	1	1	0.2	

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

MIDEnvironmental

° 0	B19	B20	B21	B22	B23	B10
<		Х	Х			Х
_		Х				
		Х	Х			
						Х
					Х	
			Х			
					Х	
			Х			
<					Х	
					Х	L
				Х		
<	X	X				
		X		X		
,						
< ,	X		X	X	X	X
<	X	X	X	X		
	X		V			
			X			
			X			
/			v			^
`	v		^ V			<u> </u>
	^		^			
			<u> </u>			<u> </u>
		x	<u> </u>			
(<u> </u>
`						
					X	
			<u> </u>			
	Х		Х			<u> </u>
						<u> </u>
<	x	Х	Х			<u> </u>
-		X				<u> </u>
	Х	-	Х			<u> </u>
			-			<u> </u>

MJDEnvironmental

<u>°</u>	B19	B20	B21	B22	B23	B10
<	Х	Х	Х			
		Х	Х			
						<u> </u>
<	х	х	Х			<u> </u>
<						<u> </u>
<						<u> </u>
						x
<					x	
<						<u> </u>
					x	<u> </u>
					~	<u> </u>
						x
		x				
		~	x		X	x
/			~		X	X
`					~	~
					v	
					×	
/					×	×
`					^	^
	v	v	V			
	^	×	~			
/	V	X	V		V	
< /	X	X	X		X	
(X				
/		X				X
(X	X		X	X
		X	X			
		X				
<						
						X
						<u> </u>
						<u> </u>
<						X
					Х	L
						L
<		Х		X		

MIDEnvironmental

<u>°</u>	319	320	321	322	323	1
	X	X	X			
	~	~	~			v
						^
<	X	X	X	X	X	X
		Х	X			
<		X	Х			
						X
<						Х
						X
					Х	Х
<	X					<u> </u>
-						x
						~
			V		V	V
			X		X	X
		X				
<	Х	Х	Х	Х		Х
			Х			
					Х	
<	Х	Х	Х	Х	Х	Х
		х	х			
<	x	X			x	x
•	~	~			Y	
			v	v	~	
		X	A V	^		
		X	X			<u> </u>
			Х		Х	
<						
					Х	
						<u> </u>
	X	X			x	
	^	^			^	<u> </u>
						X
<	Х	Х	Х	Х	Х	

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

MJDEnvironmental

<u>°</u>	B19	B20	B21	B22	B23	1 1
<						
					Х	
		Х				Х
					Х	Х
					Х	Х
			Х			
					Х	X
	Х		Х			X
<						
<	Х	Х	Х	Х	Х	
<						
					Х	
						X
<		Х			Х	Х
<	Х	Х	Х			
		Х				
<	Х			Х		
					Х	
					Х	
	Х	Х		Х		
		Х				
			Х		Х	
<						
<	Х	Х	Х			
					Х	
<	Х		Х		Х	Х
		Х			Х	
<	Х	Х	Х			
		Х	Х			
<		Х			Х	Х
<	Х	Х	Х			
<		Х			Х	
						Х

MJDEnvironmental

*Exotic species

o n	B19	B20	B21	B22	B23	B10 1
		Х				
					Х	
		Х				
						Х
X		Х	Х	Х		
X		Х			Х	Х
		Х				
	Х					
				Х		
					Х	
					Х	
					Х	
X		Х			Х	Х
			Х			
						Х
		Х	Х			Х
		Х	Х			Х
			Х			
					Х	
	Х					
	Х	Х	Х			
X	Х	Х	Х			
			Х			
			Х			
X		Х	Х		Х	Х
		Х				Х
		Х	Х			
			Х			

Appendix D

BAM Plot Sheets

Appendix C is inclusive of B101 conducted in 2021. No paper data sheets were used in the field.

BAM Site -	Field Survey F	orm			Site Sheet	no:	32	
		Survey Name	Zone ID	ID Recorders				1
Date	20 6 18.	Black Hill ind	V21	A Cark	allavo 1	PP-S	muth.	
Zone 56	CDA94	Plot ID	BO1.	Plot dimensions	20+20	Photo #	100	- 003
Easting 0310665	Northing	IBRA region	S-phez Basi	Midline bearing from 0 m	5°	U	-	
Vegetation Clas	S	Huner-	Madeay	DHS	cielopmi	feet	nfidence:	1
Plant Communit	ty Type	1592 - Ere	3 gm - shick	red Hone	Ren EEC:	tes (H	nfidence: M L	

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

Trees	8
	0
Shrubs	5
Grasses etc.	15
Forbs	7
Ferns *	1
Other	2
Trees	1.15
Shrubs	3.7
Grasses etc.	49.3
Forbs	2.4
Ferns	
Other	0.2
	Grasses etc. Forbs Ferns Other Trees Shrubs Grasses etc. Forbs Ferns Other

BAM Attribute (1000 m ² plot)							
DBH	# Tree Stems Count	# Stems with Hollows					
80 + cm							
50 – 79 cm	111 3						
30 – 49 cm	H1 W1 111 (3)						
20 – 29 cm	It mm m 3						
10 – 19 cm	HT HT HT I (C)						
5 – 9 cm	HT HHII (12)						
< 5 cm		n/a					
Length of log (≥10 cm diamete >50 cm in length		THI HI					

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)	
Subplot score (% in each)	5070.404095	00000	00000	00000	
Average of the 5 subplots	59	0	0	0	

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			choleischang, few mid store, jung ranger
Cultivation (inc. pasture)			<u> </u>
Soil erosion			
Firewood / CWD removal			i- com
Grazing (identify native/stock)			light glozing (attile) compare to avers : 10,
Fire damage		1.1	
Storm damage		1	
Weediness		1	ion weeds confeed to others. (3+4)
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

400 m ²	plot: Sheet 2 of 3	Survey Name	Plot Identifier		Re	ecorders		
Date	20 06 18	Blackhill Ind	BOI (267)	AC	76 6	5		
GF Code	Top 3 native species in All other native and exo	each growth form group: Ful tic species: Full species nam	l species name mandatory e where practicable	N, E or HTE	Cover	Abund	stratum	voucher
TG	(orymoia	maculary		7	p.	2	T	
TE	FUCAISPIL	s Abrosa.		2	0.	2	T	
TG	Corjmbia	gumilerg.		7	10.	1	T	
TE	Sonarpi	a gomilara	L	2	5	3.	T	
TE	pilarasuo	ving. trolo	59	N		2	Tree	
TE	microlaa	or stipoides		N	30	500	6655	
GE	entolasia	shidq.		N	40.	50	Gass	
EG	Cheibuth	es sieberi		N		100.	Fern	
For	oxalis	perennans		N	0.1	3.	Forb	
	Axe Axe	props fissi	Poll-S	HTE	2.	50.	6	
Ctt	philothri	x desig.		7	0.5	10.	sage	
66	fimbris.	fills dichoi	ong	N	0.5	10.	sedge	
GE	Digitari	a panillar	2	N	2	50.	EXPSS	
SG.	pinelec	a linearlaik	2.	N	0.1.	2.	shich	
SC	ptep	iterated p	abcea.	7	GI.	2.		
GE	lonard	ANG BAR A	11 Bams sub Rivite	insN	0.5	2		
GG	theme	dg triandle	ì	N	0.5	0.	-	
FG	Plahia	provants	ens	N	0.1	100.		
	mpoch	aeris lodice	alg	E,	0.1.	10.		
FG_	V eto V	erronia cir	erea	N	05	20		
FG_	Bunier	iella assie	115	N	0.5	50.		
66	Arishida	Vagens.		N	2	100.		
56	Aracia	ebraqua		7	3	05		
BG	Hakeo	1. Sericea.	0.	N	0.1	an		
GG_	iomand	la grand	+ mutil kig	N	0.1	@puh.	\$	
	landar	ng comorg		HTE	13/4	4.2	-	
SG_	Bason	nia spiros	P1	N	0.5k			
OG_	Harden	begig vido	iceq	N	0.1	3		
66	lanora	va gaica.		N	01	12	-	
66	panic	on. Juli	e.	N	6.5.	10		
FG	Garaca	ips. tecno	ides	N	0.1.	2		
FG	Dianeik	F. revolta	16-10	N	0.1:	1		
06	Verner	olia st pic	state.	N	0.	1		
FG	SORE	the belliopte		N	0.1	20.		
66	Cyci-	> 36 310	acity	M	01	IO.		
16	glach	dia ficily	noli	2	1.0	1		
	Sida	wowp.1911		E		4		
66	terino	pagen. Ge	spiosus.	M	1	D.		
0.0	thigh	o breeopt	9.	E	0-2	2		
EE	Branch	19 Allomis	sigh conacea	N	0.5	10.		

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000,

400 m ²	plot: Sheet 3 of 3 Survey Name Plot Identifier		Re	ecorders		
Date	20 6 18. Blocknill Ind BOI (267)	AC	36	5.		
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher
66	spolobols chignes	E	0.5	10.		
TG	Evalptis. sparsifolia.	N	5	1.		
66	Dichelachne se.	N	05	3.		
-		-				
		-	-		-	
		-			-	-
						-
				-		
1						
			-			
		-				
			-			
		-		-		
		-	-			
					-	
		-				
-		-				
	N. Contraction of the second sec					
			1			
					-	
		-	-	-	-	
		-	-		-	
		-	-	-	-	
-		-			-	
				1		

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic GF - circle code if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

BAM Site -	BAM Site – Field Survey Form Site Sheet no:						
	Survey Name Zone ID Recorders				rs		
Date	20 6 18.	Slack Hill INJ	VZZ:	A Carb	middo b	P.Sa	19h.
Zone	GDA 94.	Plot ID	BOR (258)	Plot dimensions	20×20.	Photo #	0036
Easting 370585	Northing 6367617,	IBRA region	sydney Basin	Midline bearing from 0 m	170°		
Vegetation Class		Honter -Mac	legy Dry SOE	CAMI =	Forest	Сс	M L
Plant Community Type 1592.		- SPOHED O	ym-redib	nbork.	EEC:		M L

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

BAM (400	Attribute m ² plot)	Sum values
	Trees	4
	Shrubs	2
Count of	Grasses etc.	7
Richness	Forbs	8
	Ferns	1
	Other	5
	Trees	52
Sum of	Shrubs	2
of native	Grasses etc.	8.8
plants by	Forbs	5.7
form group	Ferns	0.5
	Other	0.6
High Threat	Weed cover	121

		BAM Attri	bute (1000 m ²)	plot)	
DBH	#	Tree Stems	Count	# Sten	ns with Hollows
80 + cm					
50 – 79 cm	1		0		
30 – 49 cm	W1.	HTIII	1 (4)		
20 – 29 cm	WH	1CHILH	11,41 (23)		
10 – 19 cm	Whi	HT HIT A	HT1 (21)	-	
5 – 9 cm	Hun		9		
< 5 cm	1111		(4)		n/a
Length of log (≥10 cm diamet >50 cm in lengt	gs (m) er, h)	HH I	6		

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)		
Subplot score (% in each)	959590957	00000	00000			
Average of the 5 subplots	87	0	0			

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)		-	sound conopy
Cultivation (inc. pasture)			
Soil erosion		1	
Firewood / CWD removal			
Grazing (identify native/stock)			iBut glozing (cattle) due to preserve d'notives.
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

400 m ²	plot: Sheet 2 of 2	Survey Name	Plot Identifier		Re	corders		
Date	20 6 18	Blackmill Ind	802	AC	- +	PS		
GF Code	Top 3 native species in All other native and exo	each growth form group: Ful tic species: Full species nam	l species name mandatory e where practicable	N, E or HTE	Cover	Abund	stratum	voucher
TG	(digital)	a macuata		7	20.	18		
TG	Eucalyph	S Hars	Maniculata	2	12	TIL		
TG	Fucality	is the	Sideraphonig	N	20.	17.		
FG	Plan p	upaexers.		N	5	200.		
1	isida iv	omb.tolig.		E	5.	150.		
	Axonops	- fissifoiks		HTE	2	100.		
	Envinat	1, execta		HTE	2	100		
65	eniorsia	a swicta.		N	3	300		
CE	miciober	m shpades		N		30.		
66	Creens	glacus.		N	1	100.		
OG	Desmad	ium. Varian	5.	N	0.1	20.		
06	grave	tobacing		N	0.1	50		
FG	comme	inon com	ea.	N	0.1	10.		
	pospole	m dialate	tm.	HTE	1.0	10		
	Serec	O. SPP.		E	0.1	3.		-
		CITE .			C.	- en	i	
CE	pospa la	din disa	5.	N	0.5	50		
GE	iomarc	wa carlet	the my Hill	AN	0.1	20.		
CE	baran	dua l'ilibini	S.S.DSP. fixta	MSN		100	4	
	planter	o kaceolak	1.	E	0.1	20.	-	
-	ignaria	Canaq.		HTE	8.	5.		
-	Dian	T CONT		-	0	2		
FG	Erad	19 hastato	1	2	01	20.		
46	muldan	ing gramines	1	N	0.1	2		
35	BUB	and spran	59	N	1	2		
GE.	thempo	la trigoly		M	02	Spa	2	
FG	Pleatraw	HILLS PARVIL	lors	N	01	1		-
OG	fractions	egin vibin	Eg	1	0.1	D.		
OG-	forobie	a paradia	m.	M	0.1	3		-
55	Solan	an semg	acm.	N	01	50.	-	
45	Vernoni	G Contract	1 cirerea	N	0.1	20.	-	
OG	ferens	AT Stania	29	F	Q1	1		
ELT	Stolo	and africa		E	Q.C	0	-	
EO	Cherter	Na dens	~	N	0.5	D		
10	Uchan	sa mili	NG	1.	01	20		-
TUT	Eraho	is Obicsa	17	1	10	7		
10	Louist	y forwart.		12		1		
-							-	
						1		

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000,

BAM Site -	Field Survey F	orm			Site Sheet	no: \	2
	0.1	Survey Name	Zone ID		Recorde	ers	
Zone	20 6 18.	Scanil ND	V244	Acar	March	CSA	in
Easting	CDA 94	Plot ID	808(276)	Plot dimensions	20+70	Photo #	0040
370488	6367148.	IBRA region	SHOP BEST	Midline bearing	190.		
Vegetation Class		Hunter - MC	ACREAT DU S	from 0 m		Co	onfidence:
Plant Communit	y Type 1592	socilenta	tog vig s	Creichin	III toles	ST H	M L
Record easting and n	orthing at 0 m on midline	Dimensiona (Sharah Ca	m-realin	none	EEC:	VR	M L

Shape) of 0.04 ha base plot.

(40	0 m ² plot)	Sum values	
	Trees	2	
	Shrubs	2	
Count of	Grasses etc.	18	
Richness	Forbs	5	1
	Ferns	-	
	Other	1	
	Trees	20	
Sum of	Shrubs	5.5	
of native	Grasses etc.	33.9	
plants by	Forbs	3.3	
form group	Ferns	-	
	Other	0.1	
High Threat	Weed cover	43.2	

	BAM Attribute (1000 m ²)	olot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm	1 0	New York
50 – 79 cm	I 0	
30 – 49 cm	Itt Itt (D)	
20 – 29 cm	HT HT HT III (18)	- 1
10 – 19 cm	INT HIT HAT I TO	
5 – 9 cm	HIT HIT HIT I (ID)	-
< 5 cm	1111 (4)	n/a
Length of logs (≥10 cm diameter >50 cm in length)	(m) HAT HAT HAT IIII	(19).

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living. For hollows, count only the presence of enter stems that the living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	December		
Subplot score (% in analy	2010200000	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
cuspiot score (% in each)	2410 50	020550	00000	
Average of the 5 subplots	27	dista si		00000
Average of the 5 subplots	21	910 B	0	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Time	Landform	andform	official and (optional)
Туре	Element	Pattorn	Microrelief
Lithology	Soil Surface	Soil	Microrenter O III
	Texture	Colour	Soil
Slope	Aspect	Site Drainage	Distance to pearest
		and aroundigo	the notificat

Plot Disturbance	Severity code	Age	Observational evidence:
Clearing (inc. logging)		oode	MAR COURS
Cultivation (inc. pasture)			Jung (anopy
Soil erosion			Proving Proce 1 P.
Firewood / CWD removal			courres were cattle.
Grazing (identify native/stock)			have along (million)
Fire damage			reary jecu (atte)
Storm damage			
Weediness			high death
Other			might ressing hard grundlar/

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

	Late Chart	of 2	Survey Name	Plot Identifier		Re	corders		
0 m² p	not: Sneet 4	14	Blanchill Ind	603	AC	* the	>		
Date	20 6	10	Diction						
GF	Top 3 native	species in	each growth form group: Fu	Il species name mandatory ne where practicable	N, E or HTE	Cover	Abund	stratum	voucher
Code	All other hativ	e and exc	stic species i an sp		7	15.	26		
TE	COF	more	a manufact	6	N	5.	4		
6	EL	cay	AS robes	- 1. CA	N	5	6	-	
35	me	jale-	ia nous	559	N	0.5	3		
36	5	139	ia hastate	a	N	0.5	20.		
-6	Ev	2000	icy. Masse	bades	N	30	200		
de	m	CIOV	acheer si	P	HTE	40.	500		-
	en	May	ALS OF	licans	F		20	-	
	3	2010	burs hill	alia	E	0.5	50		-
	6	ida	WICINGIA	admillion	N	0.5	20		-
FG	4	SOR	non prime	pa	N	0.2	15		
FE	0	run	ena gr	esces	N	ave	250		
75	- PI	ati	a prom	listans	N	0.5	,20		-
ite	P	este	119Chorr C		HTE	1	20		
	G	rent	NS Acros	Shern.	N	0.1	3		-
Et-	10	mor	and a mith	not in s	N	0.1	20		-
(t	0	PIISO	nens imp	PCI III J	N.	0.1			
FG		plag	Conogate	1.	N	2	200	2	-
CE	- C	Jeer-	-> Storen		E	02	2 50	>	
	e	ana	go mede	1100	E	2	200	2	
C .	5	300	soom m	TOPT	HTE	= 7	2		
	10	nici	a comora	2	E	6.1	2		
	-	sonc	ms sep.		E	0.	01	•	
-		sen	ecio SKR	- et	N	0	1 10		
OG	5 0	150	the sapar	ida	N	I	35		
CC	T E	270	blag a sh	rich-1	N	0.1	1	-	-
60		mil	ow ette	10	N	0.	11		
GG	- (Pari	cum Sil	E.	HTT	EO:	22		
	(ces	non par				1-		
		_							
	<								
-	1 2 4								
-	-								
_	-								
-									
-									

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic **GF – circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately $63 \times 63 \times 63$ cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4×1.4 m, and $1\% = 2.0 \times 2.0$ m, $5\% = 4 \times 5$ m, $25\% = 10 \times 10$ m Abundance: 1, 2, 3, ..., 10, 20, 30, ..., 1000,

BAM Site -	Field Survey F	orm	1		Site Sheet	no: 🔪	2]
		Survey Name	Zone ID		Recorder	rs		1
Date	21 06 18	BACKNII IND	VZA	Acava	NOC 4	BP.S	Smith	
Zone	C-DA 94	Plot ID	BO4 (071)	Plot dimensions	20,20	Photo #	100-001	the
Easting 310493	Northing	IBRA region	Spher Basin	Midline bearing from 0 m	295			
Vegetation Clas	s	Hunter-Mc	riegn Dry s	reicon	III Foles	t Co	nfidence:	
Plant Communi	ty Type 15912	BROHEDLE	um-leal	Nonba	EEC:	Co	nfidence:	
Record excition and			Printer of the Constant of the			× (A)	ML	

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

BAM (400	Attribute) m ² plot)	Sum values	
	Trees	2	
	Shrubs	1	
Count of Native Richness	Grasses etc.	5	13
	Forbs	7	C
	Ferns	-	
	Other	2	-
-	Trees	35	
Sum of	Shrubs	0.1	
of native	Grasses etc.	15.5	
plants by growth form group	Forbs	1.6	
	Ferns	-	
	Other	0.2	
High Threat	Weed cover	41.8	

2	# Stems with Hollows
INKI OD	
MI G	
	1 (1)
TH O	
3	n/a
HT 11 (7))

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)	8570 45 2060	570401075	00000	00000
Average of the 5 subplots	56	30	0	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			underschubed, this request anazia ro midsiane
Cultivation (inc. pasture)			Generally young county will being out
Soil erosion			wack from callie. I chapt why and change
Firewood / CWD removal			
Grazing (identify native/stock)			obvices reaking atzing (author)
Fire damage			the second second in
Storm damage			
Weediness			high weld desity
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

400 m ²	blot: Sheet Z of Z Survey Name Plot Identifier		R	ecorders		
Date	21 06 18 BLACCHILLIND BOY	D.Co	Noila	10 8	sh	in
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher
TG	rorambia machang	7	15	20		1
TH	· Europe dus fibrosa	N	20	7		
	Side inorbi-lovig	E	.5	200.		
	Frimata electa	HTE	40	500		
FL	commelling change	N	0.5	50		-
FIT	solation prinophyllum.	N	0.1	5		
	centrus clardesinian.	HTE	1	100		
16	Croens giccilis	2	0.2	50		-
FG	anidia. hostata	N	0.5	150		-
it	parparedium distas	N	10.	300	-	-
	Spherio SPP.	E	01	10.		
6-6-	MICIOPERA SIPORTS	4	5.	900		
54-	Busaria Spirasa	4	100	61	1000	
TIT	platia aspontestars	4	01	20		
CL-	Ironanalia multipla	2	0.1	2		
60	and obdyton	E	0.5	20		
	Eramiog	E	0.1	2		
FG	Oxall'S Perennens	N	O.I	20		
FL-	Financia names	N	02	60		
GE	Entobsia skida	N	0.2	30	-	
-	spotobuls africans	E	0.1	3	-	
	landna ramara	HTE	0.5	1	-	
FG	portulacy spp.	N	0.1	1		
	ponicum maxima	E	61	1		-
	serecio modegescenerais	HTE	0.1	0		
OG	personsia straninea	N	0.1	1		
N+	grave tobacing.	M	01	10		-
~	Carron Parai	HTE	0.2	. 1	-	-
	sobrennique.	E	01	1		-
-						
						_
	X6				-	
				-		
	24			-	-	
				-		
	18					
-						
		1000				
-						

GF Code: see Growth Form definitions in Appendix 1N: native, E: exotic, HTE: high threat exoticGF - circle code if 'top 3'.Cover:0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63×63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4×1.4 m, and $1\% = 2.0 \times 2.0$ m, $5\% = 4 \times 5$ m, $25\% = 10 \times 10$ mAbundance:1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

F

-This document has not been endorsed or approved by Office of E

			. onn			
	101		Survey Name	7	S	lite Sheet no:
	Date 1	06 19	BRUILL	Zone ID		Recorders
56	CD	Datum	Ortif Ind	122	ACAVAL	MOGAC M
Easting	60	Month:	Plot ID	BOSAN	Plot	not i smithi
36943	a 12	11200	IPPA	505(611	dimensions	Photo #
Vegetation	0 02	06308	IBRA region	Syd Basin	bearing 2	200
Distantion	Class		Hunter-Mc		from 0 m	130
Plant Comm	nunity Type		1500	very 125 s	scierophyll	Forest Confide
Record easting	and northing at	0 m on midline	11942.5	potted Gen	- Reditors	EEC: Confide
BAM A	ttribute		. Onnensions (Shape) of 0.(04 ha base plot.	100	(Н м
(400 m	² plot)	Sum valu	ues	BAM	Attribute (1000	
2	rees	3	DBH	# Tree S	tems Count	plot)
S	hrubs	4	80 + cm			# Stems with Hollows
Count of G	rasses etc.	12	50 70			
Richness Fo	orbs	1E	00 = /9 cn		2	
Fe	erns	10	30 - 49 cm	innus	II O	
		1	20 20	MULT	II (B)	
Ut	ner	10	20 = 29 cm	HTT HTTI	111 (14)	
Tre	es	30.1	10 - 19 cm	ILT INT IN		
Sum of Shi	rubs	RE		MI HIN IN	VIII(9)	
of native Gra	isses etc.	113	5-9 cm	MUI	R	
lants by For	he	11-2	< 5 cm			
growth		6.2	Length of la	11	(2)	n/a
	IS	0.1	(≥10 cm diame	ter,	17 11	-
Othe	ər	1.5	Counte and	th) ILF4 T	12 = "11	on 1
h Threat Weed	cover	15.2	when > 10 (eg.	hen the number of tree ste 10, 20, 30, 100, 200, 300	ems within a size class	is ≤ 10. Estimates can be
			For hollows, co	I in the count/estimate. Tree	e stems must be living	ned tree, only the largest living
	-		the largest stem	is included in the count/esti	stem containing hollows imate. Stems may be	s. For a multi-stemmed tree, on
Attribute (1 x	1 m plots)	Litter	cover (%) Baro			ueau and may be shrubs.
Subplot score	(% in each)	1680	6580 5010	ground cover (%)	Cryptogam cover (%	() Rock cover (%)
Average of t	the 5 subplots	6	quarte	0000	0000	00000
ncludes leaves, se	as the average peds, twigs, brai	percentage grou	ind cover of litter recorded	from five d as a l	0	0
	o - I Midi	remets and brar	nches (less than 10 cm in d	iameter). Assessors may al	so record the cover of	45 m along the plot midline. Litter
Physiogra	aphy + site	e features	that may be to a			ock, bare ground and cryptogan
phological e		Landform	that may nelp in	determining PCT	and Managem	ent Zone (antianal)
ology		Soil Surface		Pattern	Microreli	ef
e		Texture		Colour	Soil	
		Aspect		Site Drainage	Depth Distance	to nearest
Disturbance	Severi	y Age	Observational avidance		water and	l type
ring (inc. logging	g)	code	Leloh. H			
vation (inc. past	ure)		Good yo	ing Francist 1	acking Natu	e unich
vood / CIMD	august 1		- mix	of Unture ex	otis ofstee	1
ing (identify patiential	oval		0			-
longe	- Shy		Greening Publica	at loot a	1	

P.P

tree

rgeold

the.

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Storm damage

Weediness

Other

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

00

refne)

sisting

as as	not been en	doised of approved as			Re	corders		
	0.2	Survey Name	Plot Identifier	Ac	LE	25.		
n² plot: She	et Lof 2	and an had	605	AL				
te 21	618	Borcan me	Full species name mandatory	N, E or	Cover	Abund	stratum	voucher
Top 3 n	ative species in native and ex	kotic species: Full species	name where practicable	1112	10	22		-
de All otre	Thative are	a macul	eta	N	10.	K		-
5 (0	Burn	No Ribios	~ 1	LHE	10	6		
5 6	Ucarj	a ranera		FIL	K	200		
	conser	EXECT	λ	HIL	+ 7	150	>	
E	whom	a and	HINM.	M	tai	10	1	
5	Solan	in proop	2	N	for i	TH	1	
6	Oven	S leierve	massim	M	101	175	0)	
(7 0	aerton	pesino	DIPUTORYE	MC	4.	iE	SIL	
6	Sietia	paper		2	10.2	HE	w to	
SE	ano	ire tobre	withis	2	0	1 000	15	
6	decty	antino Pe	Samues	2 2	S	20	0	-
6	LOHIS	mens into	entrepense	N	2	50	0	
	Reni	oniella au	SIVE IT S.	4	1	50	0	
5	cape	rs glacil	12	N	0	1	-	
5	altic	ine mide	spand	N	2	- 40		
5G-	510	lalgera =	Stipoloes	Ť	=	20	20	
de	CANC	idnon!	lolia		0.	2 <	>	
	Sia	lego la	reolata	-	in	1 15	5	-
	- PP-	the same M	UHHIda	-		7 4	0	
FG	Ha	THOLD AN	icia	h	1 0	1 2	5	
66	ent	DESA S	Dereg	N		1	0	
FE	Veri	nonia ci	dokna	1	10	-	D	
OG	port	bren for	00159	N	0	01	5	
TG.	ap	nionia e	nsei	P	C	01	Am S	
SE	Bi	sona gri	U.Diala	P	0	1-	the h	
66	ION	andla mu	11141019	K		1.1	10	
FGT	Fin	golia has	1919	K		1.5	30	
Lym	post	percolum c	All Services	N	0).2	15	-
6C-	150	olonn S	Reingiani	1	5 6	201	1	
OCT	den	notis ans	tera	N	1 1	1.5	3	
6G-	00	isonsia s	Nominey	SIL	TE C	1.(5	
20-	ap	near o ma	digisiarens		U P	21	50	
The	00	denia he	belacar			201	10	
TO	200	moons le	otilions			2.1	1	
06	Col	ago faral	9		N L	1	1	
FG	lei	modium	vonans.		N G	Jan 1	5	
75	UP,	Programp	belioides		N)-1	-	
FG	SC	da da da	a violacea		N	Jar		
OG	he	pensergn	dichotoma		N	2-1	10	-
CG	Alim.	pristus	Ing		N	3.2	12	-
H-	COE	Sig pavi	and the			2-1	11	

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if top 3.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

Date	211	10	Su	rvey Name	Plot	Identifier					
	-1 0	18	Blac	thill ind	BOI			F	ecorders	3	
GF	Top 3 native	species in	each group	4h. C		2	A	C +	3		
Coue	All other nation	ve and exc	otic species:	Full species nan	Ill species na	me mandate	Dry NE	-			-
	Dra	cia	frink	2 ele	ne where pra	cticable	HTE	Cover	Abund	stratum	1
15	Dia	rella	i na	Rela		-	N	0.1			vouc
+6	Die	hor	Nic	- Cari	var p	ade	AN	01-1	-	-	
15	oper	CUD.	nac	repens	Ś		N	01	3		
35	Den	han	asin	riphilid			N	0.1	10		
	more	the	1011	VESUIS			A	001	3		
DG	Cant	Pito	Cia	Stennic	rea		11	Dol	L		
-6	ICMA	ner	Cler	ratided	2		12	01	-		
E	Dai	Cha	- 4111	lormis	Val. CO	liam		0-1	1		
6	Da	- IL C	7 PC	willer	19	inger	TN-	0-2	10		
	Aver	200	<u>a</u> n	50			N	0-1	2		
G	Tra.	Str.	> fis	SSILOIL	S		N	Oal	(-
	aco	-3	USIJ	ates.			HIE	0-1	3		
	(Je	um	Olic	reter	~		N	0-1	1		
					-		HIE	0-1			-
-											
-											-
_											
											-
	_										_
-											
1.1											
21											
11											
									_		
						-					
									-		
											1
-							-				
											1
										1	1
			-			_				1	1
										-	
8.2									-	-	1
									-	-	1
										-	
									1		

0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or out 71 cm across, 0.5% cover represents an area of approximately $1.4 \times 1.4 m$, and $1\% = 2.0 \times 2.0 m$, $5\% = 4 \times 5 m$, $25\% = 10 \times 10 m$

	Sumou Ma			Site Sheet	t no: 3	
Date 21 6 18	Backlinill IND	Zone ID VZ1	Recorders A cavellaro P. Smith			
Easting Northing	Plot ID	806 (273)	Plot dimensions	20120	Photo # Opig	
369380 6366855	IBRA region	StolleyBasin	Midline bearing	30°	at	
vegetation Class	Hope-Mar	10 0	from 0 m	0-		
Plant Community Type	K92-4	sported gun	ceopy	1 Fores	Confidence:	

(Shape) of 0.04 ha base plot. DAME AV

1

(4	00 m ² plot)	Sum values
	Trees	3
	Shrubs	4
Count of Native	Grasses etc.	14
Richness	Forbs	10
	Ferns	1
-	Other	4
	Trees	45
Sum of	Shrubs	3.8
of native vascular	Grasses etc.	13.5
plants by growth	Forbs	3.4
form group	Ferns	0.1
-	Other	0.4
High Threat	Need cover	na

DDU	BAM Attribute (1000 m ²	plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm	\square	and thomows
50 – 79 cm	1111 (4)	
30 – 49 cm	HTT HTT B	
20 – 29 cm	414111 3	
10 – 19 cm	LATT LAT LAT LAT UM	WI WED
5 – 9 cm	HT HTI M	
< 5 cm	0	n/a
ength of logs (≥10 cm diameter, 50 cm in length)		THIT HIT
ounts apply when		

VZ2

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living. For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute to			boundate. Stems may be dead	and may be shrubs.
BAW Attribute (1 x 1 m plots)	Litter cover (%)	Para all		
Subplot score (% in each)	85456007	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Average of the 5 subplots	66 N	20203	00000	00000
Litter cover is assessed as the average n			0	20000

itter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Man Morphological

Туре	Element	Landform	and Wanagement Zone (option	onal)
Lithology	Soil Surface	Pattern	Microrelief	
Slope	Texture	Colour	Soil	-
	Aspect	Site Drainage	Distance to nearest	

Plot Disturbance	Severity	Age	water and type
Clearing (inc.)	code	code	Observational evidence:
cleaning (Inc. logging)	1.1.1.1	100	MIDIMAL and BEER
Cultivation (inc. pasture)			mand magores - Preidh - and
Soil erosion			Jerry condy.
Firewood / CWD removal			
Grazing (identify native/stock)			2/-2
Fire damage			gloing appront
Storm damage		-	
Weediness			Sec. 2
Other			JANE WEDO CONEL.
0			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

					News		Plot Identifier		-	Rec	orders		
) m ² r	plot: S	heet	of _	Surv	ey Name	1 0		A	C	7	42	>	
ato	21	6	18	BLOCK	chill inc	1 6	506		-	-	-		
Jale	21	0			-	-	ing name mandatory	N. E or	1 00	vor	Abund	stratum	voucher
GE	Top	3 native	species i	n each growt	h form group:	Full spec	ere practicable	HTE	0	vei	1 the sector		
ode	Allo	ther nati	ive and ex	otic species:	Full species n	lanc m		N	20	D	11		-
1	-	Cala	Mal	a mai	way	.1		T	2	0	7		
15	-	(Or)	210	KS A	WOS5			14	4	-	1		
5		EU	an K.	100 11	1000010	ande	S	7	L	>	200	1	
6		EU	a1-124	5.0	CIVER III	2.2.01		4	1	0	300	1	1
1-		In	1010	319 3	wicht	4		N	K	0	100		-
	-	G	me	PA	here	Jave	9	T		-	20		
15		cu		Na	conter	nlo	19		- 0	01	E		
66	5	10	At a r	ala	Lico	Ng		4	(2.1	20	-	
36	-	-11	en	an	Marc	1		N	C	5.2	20	-	
1-1-	-	A.	is to	dav	appins	-		N	C	12	13		-
50	-	(Zan	hee	y per	-dov	cha	IH	20	1 6	4	1	
00	7	1	60	- erv	nin	cha	scarlesis	Hu			10		
			Se	necu	In mine	2		7	C	3-1	IU	-	
06	7	0	15ch	e te	sterv		0	N	C	31	5	-	
01			in	ine 1	clarde	SIV	7	N	0	10	20		
26	7	1	201	ione	ig a	SNO	11>	N		20	12		
40	2	1	Bior	10-100	AG 1	VION	area	-	-	Te	101	0	
06	7	1	narc	Ren R	- miles	are	2.5	5	-	1.2	210	-	-
FC-	5	(plat	a p	1 care	LOF	STOLE	1		01	15	-	
6.6	-	1	paic	lospe	rma	leik	Ayor	PS LIT	E	Dol	12		
00	-	0	1-10	bina	ion o	STAP	the share	ans ru		01	IC		
-	-	- (-000	100	a di	ani	19.	T	-	0	2 21	2	
46	5	(Stat	- No	M	Hill	dg	T	1	0.	2 31	-	
C	6	1	and	mores	2 10	1 And	pmg	1		0.	1 3	1.	-
C (1	sing	1920	2.0	AICTU		T	1	0.	12		_
00	-		pag	aloch	s bi	on	-11		1	0	1 10	D	
6	5		POL	inne	nacr	- C	aspuos.	2. 1	1	0	1 20	5	
G	5	-	ech	O DI	tim	d	islans	7	-	0	10	0	
C	6	1.	PCS	perm		in	des	1	7	4	- 10	0	
C	6	1	MIC	idgen	n J	it		7	1	0	1 1	0.	
0	-	-	icon	ndva	gaci	112	1	-	1	0	1 5	2	
5			0.6	alani	res	SIE	1 Sen		T	m	< 1	7	
F	G		che	had	ram	arc	2	F	TIE	9	2 2	2	
-			19	tron		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	1	2	1.	2	2	
S	6		BL	n sala	SV	200	PA		N	0	1 1	0	
F	-)-		SPA	onic	2 0	ren	- eq	1	N	0	113	2	
C	T		TUT	as	USILA	25			1	0	2 .	50	
C		-	500	acia	oon.	ride	7.	-	1-	0	3	1	
T	10		Co	iesr1	non	ic	nipertis		2	V	4	-	
5	うし	1	1es	arc	yer	5	e**	1	1	0	-1	C	-
5	FC-	1	OX	ans	peter	ne	2		N	0	-1		
F	6		0	0-01	g de	VO	Ag.		F	0	2	12	
1	9	-	- 12	200	am 19	ree	ohtg		5-		T	0	
		-	T		5	Olis	milim		H	C		12	-
1	FG	-	2	OFIN	- m	1 m	C.NO	M	2	C	2-1	10	
1	4-	-	RE	stidos	Herme	1 .1	Cal		N	C	1-1	1	
		-	an	ereo	E. St	100	51.		Ì	C		1	
-	20	-	to:	odi	a hos	Jal	9		2	1		20)	
	+1-	-	EI	reat	1 1	- Ca	Lie an	ala I	HITE	C	102	2	

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

Date	21 6	81	RAC	a lot identi	lier	N	R	ecorders		
			000	Blackhi	11 mal	4	+ C	LO	-	
GF	Top 3 nativ	e species i	n each growth t					TY	2.	
Code	All other na	ative and ex	otic species: Full species	Full species name ma name where practicabl	andatory le	N, E or	Cover	Abund		
~ .	AC	ACIG	elongoig		_	THE		- insurio	stratum	VOL
	_	_			-	2	2			
										-
										_
										1
										-
-	_									
					-					
						-				
										-
										-
-					-	-				
					_					
										-
	100000					-				
-										
										-
-			S							
					_					-
							-			-
									-	
-					-	-				
					_					
		-								-
									-	
-					-					
-					-					
										-
								_		
-					-	_				
					_					
										-
-						-	-	-	-	
					-	-				
					-					
1.5										-
-					-				-	
					-	-				
						-				-
										-
						-			_	

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

	ourvey r	onn			Site Sheet	no: \ 3
Date	21 0610	Survey Name	Zone ID		Recorde	ers
Zone	Datum	BHill Ind	VI	A.C.W	ALLAROT	P sm Mar
5 6 Easting	GDA94	Plot ID	R07(274)	Plot dimensions	10000	Photo #
369426	6366768	IBRA region	C12	Midline bearing	12 al	000
egetation Class		HUDER MAC	sydi bean	from 0 m	10	
ant Community	/ Туре	IGGA SA	Her UJ SON	ecopyil	forest	Confidence:
ecord easting and no	orthing at 0 m on midline	Dimensiona (DL	and Jun-	- rea no	EEC:	Confidence:

RAM Attained at a month midline. Dimensions (Shape) of 0.04 ha base plot.

ĩ

(40	0 m ² plot)	Sum values
	Trees	4
	Shrubs	14
Count of Native	Grasses etc.	12
Richness	Forbs	100 11
	Ferns	1
	Other	7
	Trees	45
Sum of Cover	Shrubs	5.4
of native	Grasses etc.	12-1
plants by	Forbs	3.2
form group	Ferns	0.1
	Other	0.7.
High Threat	Weed cover	6.1

	BAM Attribute (1000 m	² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		
30 – 49 cm	HTIM O	15
20 – 29 cm	HIHIN @	X
10 – 19 cm	H HT HT HT IE	MA.
5 – 9 cm		R
< 5 cm		n/a
ength of logs (m) 10 cm diameter, 50 cm in length)	HIT. HIT. HIT H	THE HIT HAT
ounts apply when the	P() (()	e

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Baro annual		
Subplot score (% in each)	25 Theren	< < < < < < < < < < < < < < < < < < <	Cryptogam cover (%)	Rock cover (%)
Average of the 5 subplots	LTUR	33062	00000	0000
Litter cover is assessed as the overage	01	4.8	0.	

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Туре	Landform	Landform	and Management Zone (opt	ional)
Lithology	Soil Surface	Pattern	Microrelief	
Class	Texture	Colour	Soil	
Slope	Aspect	Site Drainage	Depth Distance to passed	
		end brailage	L'ISIGNUE LO NEARAST I	

Severity	Age	Observational evidence:
0000	code	
		Joy torst minimal notive middler
		millo m
		othe right.
		- the second
		evidence of gezig,
	-	(1)0 00 00 00
		(Figh base bontang bohind)
	code	Severity Age code code

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

		~	1.			Dict	Identifier		Re	corders		
00 m ² p	olot: Sl	heet 2 o	of <u>2</u>	Surv	vey Name	Plot	(774)	0S	×).	SC.		
Date	21	do	18	Bod	hill Ind	a	(2.4)	10	_	-		
			acion in	each growt	h form aroup: I	Full species n	ame mandatory	N, E or	Cover	Abund	stratum	voucher
GF	Top 3 All oth	native spener native	and exo	tic species.	Full species n	ame where p	racticable	HTE	20	<		
Coue		Care	nb.	9 M	acitat	9		1	10	IL		
10		03	in al	A Z	100 05is	>		2	D	11		
TG-	-	a) m	26	15.6	ocme	noi	des	N	>	1		
TG	1	2.2	010	5	ress			N	3	12	-	
SG	V	212	andi	Car	rorg.			HITE	5	0		-
	-	100 m	in	10	erecto	1		HTE		all	,	-
-	-	<u>env</u>	100	eng	31000	Jes		4	1	300	-	-
66	-	MIC	NOF		adati	iq.		N	0.1	10		-
36		55	cine	2 0.0	Dopart	ons		M	2	yee	-	
FG		pa	na	fra	1010	3		N	0.1	403	9	-
FE		Car	e>0	a per	s blo	mine	3	N	0-1	10	-	-
OG		pa	150	<u>SIA</u>	SIVE	11		2	5	250	>	-
GG		en	101-	214	Sauce	alari	9	2	0.1	20		-
OG	-	(VS	t a	31-70	re +	and	i l'i	LITE	1.0	10		
	1.1	St	ene	2010	made	idd	and a	N	0,2	2100	C	
GE	-	P1	um	ROST	Jus or	10ho-1	Juni	N	0.	30	>	
F(-		NE	ino	mig	, cr	eren		N	0.1	10		
Ct-		1	ner	-eolo	a that	2017	*	N	0.	12		
OL-	-	L	ard	er be	rgig 1	VIDIA	eq.	N	6	ÍÍÍ		
SC-	-	in	dia	obra	ast	VOID	-5	1	0	1 1		
00		d	les	mod	ium	Vorie	ans -	F	0	1 4		
00	-	0	xoli	SP	erenn	ens		M	0.	13		
TO	-		perc	Jar	ia o	redi	9.	N	0	12		
TO		0	ala	100	- into	Jucia	LS.	N	0	1 4	0	-
TU	2	E	ni	onie	a a	sudis		N	1	2	-	
+0	=	0	0.	h 11	es .	siehe	1	P	0	1 4	0	-
EC	5	0	nei	mb	dium	dis	Fins	4	5	2		
G	5	R	53	LIF	Princh	rigta		N	0	1 4	-	
S	T	14	001	di	a Mi	HID	19	2	0.	1 20	2	-
Gu	5	10	smo	dia	mate	Aifol	5	2	O	1 10	2	-
G	5	10	no	and	1000		No.	N	0	2 40	0.	
G	5	a	(ja	int	and it	hig		E	0	11	>	-
		5	199	inc	Cond	daar	a .	N	0	-1 1		
0	6	9	60	rea	6.0	Quarie	Sebse f	hemis	SNO	12	0	
G	6	10	Gm	anowe	1 2114	MASI	C.	N	0	.21	5.	
5	6		Der	MACION -	93	NINE SHI	SHADO	Th	1 0	23	0.	-
F	6	8	slai	ch-sc	DME		- min -1-		0	.2	1	
S	6	1	not	ebeg	Nal	MA.	-	-	1 G		4	
F	6	1	10,1	a.k	renter	hicitoria	7	Victor	NO	1	4	
C-	6	1	Ow	andle	a fing	DIMIS	3-28/10	ing	10	11	0.	
C)(-	C	THE	atig	Clema	toeg		-	1 C			
T	1-		NOF	2/010	CUL	duce	1	-		CE	circle co	de if 'ton

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic GF – circle code if 'top 3'. GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic GF – circle code if 'top 3'. Grover: 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or Cover: 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

	21 06 18	Bartalling		-	R	ecorders		
CF.		Sto Cevilit IV PI	1601(214)	RS	STA	C.		
Code	Top 3 native species in All other pativo and	each growth form group:	Full species pame man 1		-	_	-	-
	and exo	tic species: Full species n	ame where practicable	N, E or	Cover	Aburd		
1	hypochae	eis ladice	ala	HTE	Cover	Abund	stratum	vouch
GE-	echirop	0900 000	0.100	E	0.1	10		
	- Despadu	Jon cae	STORES	N	1.0	10		-
	-Annia D.	in verie	5	N	01	10	-	-
F(-	dava					10.		
7	Precionar	US. Poni	flows:	2	61	0		-
5	Solar	m privop	milim	14	0.1	2		
15.	Eurahp	ns older	le le	6	0.2	10,		
		T III		2	5	2		-
						-		-
								_
							-	
	and the second second							
-								
				-				
								-
								-
							-	
-								
12								-
						-		-
								_
-								
								-
				-				-
				-				
								-
							-	-
-							-	_
-				-				
				_				
1.77								-
							-	-
				-		-		

Cover: 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 1.4 \times 1.4 m, and 1% = 2.0 \times 2.0 m, 5% = 4 \times 5 m, 25% = 10 \times 10 m m
BAM Site -	Field Survey F	orm			Site Sheet	no: 1 7
-	011111	Survey Name	Zone ID		Recorde	rs
Zone	2168	Bachill IND	NZ3	A Cavo	+ collips	P.Smith
Easting	CDA 74	Plot ID	BOS (275)	Plot dimensions	20+70	Photo # 0063
369510	634689K	IBRA region	Stylney Brisin	Midline bearing	2000	
Vegetation Clas	s	Hinter	Marano	from 0 m	110	Confidence
Plant Communit	ту Туре	1592 (9	pl-sshod)	Jsce	EEC:	H M L Confidence:
Record easting and r	orthing at 0 m an midling					TH M I

Dimensions (Shape) of 0.04 ha base plot.

(40	(400 m ² plot)		
	Trees		
	Shrubs	3	
Count of	Grasses etc.	13	
Richness	Forbs	11	
	Ferns	1	
	Other	2	
	Trees	0.1	
Sum of	Shrubs	0.3	
of native	Grasses etc.	13	
plants by growth form group	Forbs	1.4	
	Ferns	0.1	
-	Other	0.2	
High Threat	Weed cover	0.4	

-

	BAM Attribute (1000 m	² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		
30 – 49 cm		
20 – 29 cm		
10 – 19 cm		
5 – 9 cm		
< 5 cm		n/a
Length of logs (m (≥10 cm diameter, >50 cm in length)	"	

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)		
Subplot score (% in each)	520 35 5 20	76 40 20 SO SO	Cryptogam cover (%)	Rock cover (%)
Average of the 5 subplots	17	101020000	2000	00000
Litter cover is assessed as the		46	20	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (opti

Tune	Landform	Landform	and management zone (optional)		
Туре	Element	Pattern	Microrelief		
Lithology	Texture	Soil	Soil		
Slope	Acrost	Colour	Depth		
	Aspect	Site Drainage	Distance to nearest		

Plot Disturbance	Severity code	Age	Observational evidence:
Clearing (inc. logging)			Cleared area next to Visit
Cultivation (inc. pasture)			and next to that -glandlove only
Soil erosion			some boreas of
Firewood / CWD removal			price sur.
Grazing (identify native/stock)			Rivere of a dia
Fire damage			- to - at since s, the pathon
Storm damage			
Weediness		-	
Other		-	

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

1

	2.7	Sunvey Name	Plot Identifier		Re	ecorders		
400 m ² p	blot: Sheet 2 of 2	Backball Loo	608	AC	×P	5		
Date	216 18	Decould and	~~					
GF Code	Top 3 native species in All other native and ex	n each growth form group: Fu otic species: Full species nan	Il species name mandatory ne where practicable	N, E or HTE	Cover	Abund	stratum	voucher
Ch	p. sida	Jagars'		2	×	600		-
G-	entok	sia strida		M	0.5	200	-	
11-	Paspa	richim dis	stars	5	2	500		
F15	900010	enia hedere	con	M	0.1	SO.		
14-	Theme	da tradh		P	02	200		
C-L-	Ionard	va mythflore	3 0.0	F	0.1	10	-	
1-1-	honord	la filitomis	S.D. KILLOIMI	> r	0.1	10.		-
EG-	Cheiko	thes sieber	1	L'	0.1	120	1	-
KG-	yane	relaria div	phyla.	2	0.4	- 50	-	-
CI-	elagiost	is blommi		M	6.2	50	-	-
TL-	Turah	pus Abiose	1	2	01	VIII VI	0.	-
CL-	Pation	Sserver	LIUNA.	N	1.0	KILINA	+	-
00	Cana	ico modera	sceniersis	HIL	01	50		
61	Serec	> usitch	S	~	2.2	50	-	-
66	papa	um diatak	m.	HTE	0.1	30		
-	FCSF COLO	No area	cons	E	01	20	-	
-	Store	mapris (ad	icala	E	01	30	-	-
0	Oxel	is perlemen	ns	2	0.	130		-
the	Ore	In obert	ion	E	20	600).	-
01	Care	opinis		H	0.1		-	-
66	- por	mes terre	iens	2	0.1	2	-	-
FG	- Son	alle see.		Z	0	10		
CE		ing comp	3	N	0	12	-	
Se	- (0)	neardyn	aculaton.	- N	0.2	100	5.	
FE	E CHO	Supra Simile	(c)	N	0.	1 50	S .	
Ge	= panic	on smill	0	P	0.			
30	F Jalla	Shig astre	115	N	0	2 100).	
Te	5 Burne	vicin alchi	rem	N	0.	150).	
TE	5 Hove	C Q D MORE	25	N	0	1 10	0	
T	= plate	ine ubaci	R.	P	0	15).	-
06	5 950	read airrides	5	P		300	2	
G	- muo	E airos.			0	12	_	
S	- bis	de pierte	1	HT	EO	130	١.	
-	engr	Darvillor	9.	N	0.	150		
H.	5 COLEDI	and broat	49	È	0.	15		
	Plan	Joseph Lali	2	E	D.	1 30	5.	
-	Sida	Indiratore	ia aprilis		0	1 10	2.	
FC	= Multian	wantenberg	na Jecus	E	0	·\ 12	5	
FC	5 Rare	illa revolution		1 11	ED	1 IC	5.	
	Cerch	1-3 cholo	S.	FIC	10	1 to	30	
C	(- a)10	o dondest	~~~.		U		~	

GF Code: see Growth Form definitions in Appendix 1N: native, E: exotic, HTE: high threat exoticGF - circle code if 'top 3'.Cover:0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 mAbundance:1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	orm		Site Sheet no: 12
		Survey Name	Zone ID	Recorders
Date	21 618.	BOYIND	VZZ	A. Queipro 1 P.Smith
Zone	C-DA 94	Plot ID	809 (276)	Plot dimensions 20x20 Photo # pdb9
369534	Northing	IBRA region	Syd Basin	Midline bearing from 0 m 30 ²
Vegetation Clas	s	HUNER -	Marken Dr	1 Scherochill Ford Confidence:
Plant Community Type		1572	spotted	EEC: Confidence:

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

BAN (40	1 Attribute 0 m ² plot)	Sum values	
	Trees	4	
	Shrubs	3	
Count of	Grasses etc.	11	
Richness	Forbs	11	2
-	Ferns	1	
	Other	4	
-	Trees	45	
Sum of Cover of native vascular plants by growth form group	Shrubs	5.2	
	Grasses etc.	4.2	
	Forbs	1.1	
	Ferns	0.1	
	Other	0.5	
High Threat	Weed cover	6.2	

	BAM Attribute (1000 m ²)	plot)		
DBH	# Tree Stems Count	# Stems with Hollows		
80 + cm				
50 – 79 cm				
30 – 49 cm	41 3			
20 – 29 cm	HT HT HT II (1)			
10 – 19 cm	INT HIT HIT HIT HIT HIT MI (SI)			
5 – 9 cm	HII HAIII	~		
< 5 cm	111 (3)	n/a		
Length of log (≥10 cm diamete >50 cm in length		9		

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (9/)
Subplot score (% in each)	808967898	00000	00000	
Average of the 5 subplots	88.6	O		00000
			0	()

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Туре	Element	Landform	Microrelief
Lithology	Soil Surface Texture	Soil Colour	Soil
Slope	Aspect	Site Drainage	Distance to nearest

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			rang concor minimal making . toscilland
Cultivation (inc. pasture)			2
Soil erosion		-	cattle trock.
Firewood / CWD removal			
Grazing (identify native/stock)		-	same glozing
Fire damage			
Storm damage			
Weediness			minimal weed cover.
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

r

400 m ²	not: Sheet 7 of	2	S	urvev Na	ame	Plot Identifier			Re	corders		
Date	761	Ъ	RO	think	Ind	609	A	-	+ (2.Sm	in	
Date	40:	-	in	54 ···	A PT			T				
GF Code	Top 3 native specie All other native and	s in exc	each gro otic speci	owth form les: Full sp	group: Fui pecies nan	ll species name mandator ne where practicable	y N, E or HTE	0	Cover	Abund	stratum	voucher
TG	commo	2.	a m	nacu	latg.	•	4	2	15.	15		
TG	EVIAN	27	ss	libro	591		2	1	0.	5.		
TE	Eucal	91	itus	par	ricula	19	L'		5.	1		
TG	Euroit	31	Plus	·SP	rsife	9,	N		5	2		
SE	Buser	6	SP	sinds	9.		2	-	2.	7.		-
CC	entole	S	19	strict	9		F	C	3.5	20.	-	
CG	Pase	ali	dicr	no	lision	-5	4	-	14	100.		
CL	hem	0	by 1	vicino	119.		7	(1.0	20.		-
76	prah	7	pri	Pira	esce	ns	4	-	0.1	SO.		-
66	micic	No	eno	h st	iperd	es	M	-	0.5	100		1
66	orist	10	a,	10g	25:		L'	0	1.0	10.		-
CG	parso.	5	ia	St.	min	eq.	P	-	0.1	10	-	
CE	lomar	20	NG	10-5	ifoh	a contention	A. H	(1.0	10.		
CG	ionar	d	49	fint	ormi	>	4		0.1	10.	-	-
GE	pog	0	-14-	"S	P.	1.0	r'	(5.0	45	-	-
66	IGmo	0	dia	mu	14410	27.	P	- (01	10	-	-
FG	Dion	e	19 1	revo	49	*	T	-	0.1	20		-
FL	Biur	NC	onie	na	-	astions	F	-	01	20	•	-
RE	Caes	a c	2 6	zan	14101	9.		(1-0	50.	-	-
FE	eine	10	shia	he	SIC	tq.	P P	= (0-1	4.		-
	P=St	20	lum	- Ch	story .	distation	HIM	-	1.0	5	-	-
C-	navo	re,	, ber	gia	Vic	laceg	4		0.2	E.	-	-
CL	- Both	30	DSQ	erma	A Tak	1101.			0.1	2.		
FG	900	d	leni	q	aetic	paging.	17	-	0.1	2.		-
	Sere	20	io n	nola	gesa	reas	HIT	=	0.1	2.	-	-
SL	Dilla	5	nig	ret	0119		1	-	0.1	10	-	
CG	Desi	n	odi	m	Varia	-5	1	-	0-1	10.	-	
St	Acac	10	1, 1	inb	ida	4		-	0.1		-	
0G	Kenn	e	dia	810	sch		1	-	0.1	ic	-	-
FG	plei	25	JIIS	5 5	P:				21	2		-
EG	- cheil	Cr	thes	55	siebe	1	N		0-1	In	-	-
F-	operc	5	aria	1 0	ithe	let		-	0.1	10.	1	-
FL-	- Oxal	15	> 8	ever	es		R	-	0.1	2		-
FG	god	e	na	hac	depc	eg	5		0-1	<		-
CC	- C1091	0	Shis	SE	2000	1.106	1	-	0-1	X	7	-
F-	sole	n	033	re	bei	HOIDES .	1		0-1	14	-	-
	11	_					-	-		-	-	-
	1	_					-	-		-	-	-
		_		-			-	-		-		
									1			

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF – circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63×63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4×1.4 m, and $1\% = 2.0 \times 2.0$ m, $5\% = 4 \times 5$ m, $25\% = 10 \times 10$ m **Abundance:** 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	orm			Site Sheet	no: 1 2
		Survey Name	Zone ID	1000	Recorde	rs
Date	22 6 18	Backnill IND	VZI	A. Cave	cilco +	PSML
56 Fasting	ED194	Plot ID	BO10 (277)	Plot dimensions	2020	Photo # 0015
<u>369477</u> _	636703	IBRA region	Sydner Besi	Midline bearing	30'	
Vegetation Clas	s	HUMEI-M	allegi D	s Schere	anil Da	Confidence:
Plant Communit	ту Туре	1592-	380 Hot Bun	- redib	North EEC:	B M L Confidence:

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

(40	0 m ² plot)	Sum values
	Trees	2
	Shrubs	4
Count of	Grasses etc.	15
Richness	Forbs	11
	Ferns	0
	Other	4
	Trees	50
Sum of	Shrubs	2.4
of native	Grasses etc.	3.9
plants by	Forbs	3.1
form group	Ferns	0
	Other	0.8
High Threat	Weed cover	1.4

DBH	# Tree Stems Count	# Stems with Hollows
80 + cm	1	
50 – 79 cm	11/1 3	1 0
30 – 49 cm	1111 (4)	
20 – 29 cm	HI HI (0)	
10 – 19 cm	HI HILL HOW	(C)
5 – 9 cm	4111 3	
< 5 cm		n/a
Length of logs (≥10 cm diameter, >50 cm in length)	(m) אדו אדו אדו אדו אדו (m) אדו	

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover	r (%)	Bar	e gro	und	cove	r (%)	Cryn	togal	0.00	VOF	10/1		2 a a lu	-	(0/)	-
Subplot score (% in each)	7080 80	8070	5	5	2	5	10	/ /	logal	1 00	/	(70)		COCK	cove	r (%)	_
Average of the 5 subplots	76		-	5	2	-		11		_		1	1	1	_	1	/
1.44				-		E		1. St. 1.	C	>			1				

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

	, indicard	Site Drainage	water and type	
Slope	Aspect	014 0	Distance to access	
Liulology	Texture	Colour	Soil	
Lithology	Soil Surface	Pattern		
Туре	Element	Landform	Microrelief	

Plot Disturbance	Severity code	Age	Observational evidence:
Clearing (inc. logging)			unders in limited and light
Cultivation (inc. pasture)			and set of manifer micesen)
Soil erosion			
Firewood / CWD removal		_	
Grazing (identify native/stock)			noro-s calle alarma
Fire damage			
Storm damage			
Weediness			Luch
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

400 m ²	plot: Sheet? of 3	Survey Name	Plot Identifier		Re	corders	~	
Date	22 6 18	Blackhill Ind	BO10 (271)	A-00	Veller	0+	P.S	smith
GF Code	Top 3 native species in All other native and exe	n each growth form group: Ful otic species: Full species nam	I species name mandatory ne where practicable	N, E or HTE	Cover	Abund	stratum	voucher
T	aundia	makilaig		7	20.	10		
T	ESCALTE	the flores		N	30	7		
5	Rysen	a spinting	-	N	2	io		
-	Intere	n lancra		HTE	0.5	1		1
6-	entres	a sivica.		N	05	200		
G	microk	aena slipcic	tes	N	10	1000		-
F	Gooden	19 nedera	ceg	N		300		
0	hibert	anti-harde	where victor	AN	0.3	5.		-
F	Oxelis	, perenner	5	N	0 1	30.		
	Sida	rhonbilding		E	0 1	\$15	-	
F	Vernon	ia cinera	2.	N	0-1	50	-	-
G	loner	dia mili	11019	M	0.1	20.	-	
6	pespe	idism dis	yers	M	0.4	Se	-	-
0	Perso	moia sive	emineq	4	0.1	200		-
F	poto	e property	es	M	0.2	200	-	-
F	eirox	dia nda	5	M	01	20		
F	Solon	m priroph	The	N	04	30	-	-
	cera	~s clarde	stis	HIE	01	20	-	-
G	long	die finle	mis subtii	King I	4	50		+
G	CAPE	ens glacil	is	F		100		-
F	Brini	oniella au	siveris	M		100		-
	ponto	igo janceo	alcric	E	0.	20	*	-
F	Caesi	a parvillate	4	M	0	3	-	-
0	artic	e cadesii	-9	F	0.1	20		-
	Sener	6 modeque	enersis	HILE	0	10	-	-
G	avisi	ok vogens		1	OX	20		
S	cossi	ia uncalig	2	1	0.4	- 2		
G	jorci	s usilars	1.00		0.	2		-
6	Roho	offerner this		2	0.	2		-
F	ech	ion invau	dans.	2	0.	0		-
F	Velor	nica pleber	9	ITE	01	K	-	
	Cager-	S ENGIOSIUS	>	MIE	0.	2	-	
F	comme	ing sareg	c	UTP	01	n		
	Axorde.	-> HESHOIL	>	ITTE	0	50		
	Ehrve	when evect	-	N	0	2		
S	pracia	timbiqiq		N	0	1 a	2	
G	iheme	da meara	1	E	0	11		
	Com	29 25		N	0	1		
G	- Noite	and bound to	19.		0	1		
6-	- abic	opogon ac	C COUNT	2	0.			-

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic **GF – circle code if 'top 3'**. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately $1.4 \times 1.4 m$, and $1\% = 2.0 \times 2.0 m$, $5\% = 4 \times 5 m$, $25\% = 10 \times 10 m$ **Abundance:** 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

Date	27 6 18 Blackfull IND Revalues	A A	R	ecorders	0 =		
	2 - 10 gran 149 300(211)	A - U	avalle	t OV	P.	Sm	
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	vouche	
5	ponicum simile	2	01	1	-		
5	porchinis	Ň	0.2	20			
2	pardorean paralologing	N	01	2.		-	
5	lonades contentions	N	01	10		-	
3	Alacia elongatos	N	0.1	10		-	
		14	0.1	1			
						-	
				1		-	
-	21						
-							
			-			-	
					-		
						_	
		-			-		
		-					
		4					
-							
-							
-					_		
-							
-							
_							
-							
-						_	
					-		
1					-		

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

*

	ricia Gaivey P	orm			Site Sheet	no: 1 2		
Date	22 06 18	Survey Name B/Hull Ind	Zone ID	Recorders A Capiblo + D such				
56 Easting	CD A94 Northing	Plot ID	BOII(278)	Plot dimensions	1000	Photo # 20%		
369533	6367 42	IBRA region	Spher Basi	Midline bearing from 0 m	25	Nº .		
Vegetation Class	S	Hunter-M.	orlean Dr.	Sch colo		Confidence:		
Plant Communit	у Туре	1592-	Spoted by	- Deck	EEC:	Gonfidence:		

to be a stand and norming at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

(40	0 m ² plot)	Sum values	1
	Trees	2	1
	Shrubs	0	
Count of	Grasses etc.	5	1
Richness	Forbs	7	1.
	Ferns	Ó	
	Other	1	
-	Trees	55	
Sum of	Shrubs	0	
of native	Grasses etc.	9.1	
plants by	Forbs	0.7	
form group	Ferns	0	
	Other	0.1	
High Threat	Weed cover	618	

DBH	# Tree Stems Count	# Stems with Hollows
80 + cm	- B	
50 – 79 cm	1111 (4)	1
30 – 49 cm	111 (3)	
20 – 29 cm	HIII (7)	
10 – 19 cm	LHT HT HT HTG	0
5 – 9 cm	11 2	
< 5 cm	0	n/a
ength of logs (r ≥10 cm diameter, 50 cm in length)	n) אדר אדר אדר אדר	111 64

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Baro around an inte		
Subplot score (% in each)	406036	2012 26 20 C	Cryptogam cover (%)	Rock cover (%)
Average of the 5 subplots	50	56035	00000	00000
Litter cover is assessed as the automatic		10.4.	0	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Type	Landform	Landform	(optional)			
Lithology	Element Soil Surface	Pattern	Microrelief			
Littology	Texture	Soil	Soil	-		
Slope	Aspect	ooloui	Depth			
	ropect	Site Drainage	Distance to nearest	-		

Plot Disturbance	Severity	Age	Observational evidence:
Clearing (inc. logging)		code	
Cultivation (inc. pasture)			and my room, no mid undergritad with ad
Soil erosion			Anderte
Firewood / CWD removal			
Grazing (identify native/stock)			Think in Days
Fire damage			ngh infect glozing (contile)
Storm damage			
Weediness			high i mot des la la
Other		-	night water desity (grand or).

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

		2 5			Plot Identifier		Re	corders		
00 m ² p	lot: Sheet 2 of	4	Survey Nar	me	B11 (278)	AC	+P°	5		_
Date	22 6 1	6	Badhill	NEL	011(210)	1-				
GF	Top 3 native specie	es in e l exot	each growth form g ic species: Full sp	group: Fu ecies nai	Il species name mandatory me where practicable	N, E or HTE	Cover	Abund	stratum	voucher
ode		0	5 ma	are	107	1	25.	M	-	
-	Excela	OL	S Ab.	105	9.	M	30	6	-	1
-	dxelle	1	Eiene	5		N	0.1	5		
F	Carro	do	n dag	tip	<u> </u>	E	10	800		
	Sida	VI	man 1	619		E	1	10		-
	Olale	90	s wie	ald	9.	E	0.5	200	-	-
	phane	70	3 - 0	-		E	0-1	10		-
	000		Decis	100	hicard .	E	0-1	30	-	-
	ma		- 0171	in	.	E	01	10		-
	Serve	in	Caleli	MEN	79	E	0.1	5.	-	-
	Flack		NO EXPL	ter		HTE	50	1000	5	-
	hel	Of.	down	a	whereare	HTE	1	SC	2	
-	Pi-O	di	5 010	25		2	0.2	. 20		-
F	Eve		in Qu	1000	milm.	2	02	50	2	-
F	50	0		100	desham	HTE	510	0 20		-
-	cer	x cr	diglo	210	19.	N	0.	110	1	-
F	100	~	dial	Rule	imis	N	0.	14		-
6	Chos	~	aling ca	ane	2	N	01	20	>	
F	loin	nº c		- cell	5	2		SC		-
C	- 52	2	in the	di	kictm.	HTE	0.14	Kep	2	-
~	Pes	0	stedion	-	disten	N	5	10	-	
G	Per	Va	00-0	abil	bides	2	1	30	2	-
6	Inic	10	acul s	afr	ans,	E	0	2 20	>	-
-	- So		SOLUS V	Na	are.	E	0.1		-	
-	Cir	DIC	ra Del	DOIN	9.	2	0-	13	-	
r	VERC	p	io moc	Jag	ascerionsis	HTE	= 0.	2 20	2.	-
1	50	la	15.0 0	ANC	49.	4	2	10	0	
6	En	20	acom	2m		HT	EOS	5.1		-
-	19	lie	a arp	NC	eses	N	0.	1 10	P	-
F	- Fie	~		P		E	0	1		
-	105	10	more	SO	P .	E	0	1 1		
-	Carr	10	e de	de	shire	2	0	1		
0	, Sal	500	hig b	rasi	liang,		EO	. \		
-	100	An	mison	avie	rse.	E	0	-1	1	
-	icro							-	-	
-	-									
-		-								
-										
-				-						
		_								

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

DAW Site - Field Survey F	orm			Site Sheet	no: 7	
Date 22 6 18	Survey Name	Zone ID	-	Records		
Zone Datum	Blackmil MD	V-24-42	A Cavallace + P Sa			
Easting Northing	Plot ID	B12 (279)	Plot	20220	Photo #	
367699 6367259	IBRA region	somer Basin	Midline	Lerce -	1 11010 # 0 5 3	
egetation Class	Hunter-m	5.500	from 0 m	34	9	
lant Community Type	1597	rettan Dry	Saleram	UII FOR		
ecord easting and northing at 0 m on midline. I	Dimensions (Shape) of 0.0	red	lionba	EEC:	Confidence:	

sions (Shape) of 0.04 ha base plot.

(4)	(400 m ² plot)			
	Trees	2		
	Shrubs	T		
Count of Native	Grasses etc.	7		
Richness	Forbs			
	Ferns	0		
	Other			
	Trees	35		
Sum of Cover	Shrubs	0.1		
of native	Grasses etc.	20.5		
plants by	Forbs	1.3		
form group	Ferns	0		
	Other	6.1		
High Threat	Weed cover	150		

DBH	BAM Attribute (1000 m	² plot)
80 ± am	# Tree Stems Count	# Stems with Hollows
00 + CM		
50 – 79 cm	$()$	
30 – 49 cm	INVILL B	
20 – 29 cm	114141	
10 – 19 cm	MUNI (1)	10
5 – 9 cm	11 (2)	10
< 5 cm		n/a
ength of logs ≥10 cm diameter, 50 cm in length)	(m) iBm.	Iva

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (4			estino may be dead a	ind may be shrubs.
DAW Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)		
Subplot score (% in each)	6530705574		Cryptogam cover (%)	Rock cover (%)
Average of the 5 subplots	39	50200		
Litter cover is assessed as the everage at		1.4.		

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Mana Morphologica

Туре	Landform	Landform	and management Zone (optional)		
Lithology	Soil Surface	Pattern	Microrelief		
Slope	Texture	Colour	Soil		
	Aspect	Site Drainage	Depth Distance to nearest		

Plot Disturbance	Severity	Age	Observational evidence:
Clearing (inc. logging)		code	
Cultivation (inc. pasture)			chose strated no, mid stored
Soil erosion			(21)10 · · ·
Firewood / CWD removal			withe wacks.
Grazing (identify native/stock)			Co III O
Fire damage			cattle grezing high indari
Storm damage			
Weediness			212:00 (2:2:
Other			genericue weeds high

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

		0	2	0	ov Name	Plot Identifier		-	Re	corders		
0 m ² pl	ot: Sł	heet 🛓	of _	Surv	ey Name	00 1009		AC	t	0	_	-
ate r	77	6	18	Back	11111001	177 (21	2					
late	ur .	-			Concern P	Tull anacies name mand	latory	N. E or	Cover	Abund	stratum	vouche
GE	Top 3	native s	pecies in	each growth	h form group:	Full species flame mana		HTE	Cover	1.10.001		
ode	All oth	her nativ	e and exe	otic species:	Full species n	lame where pres	-	N	15	8		
	-	24	idea	a n	pacia	ter		1	20.	67		
1	C	05	N SICA	OLS	Ablas	59	-	2	20	Land 4	m	
Г	(A	my	Hors.	Dissil	ans		HTE	10	Card -	pr-	
	-	HXC	ord	~ >	T	ug		E	32	00		-
	1	Sid	a	rhor	moitC	105		N	15	200		
-		mi	CIO	here	a st	1001053	-	E	01	10.		
-	-	-0	2101	210	, ali	hands.	-	E	0	40		
-	-	SK	010	ina	cor	æg,		M	0.		-	
F		(Cr)	nie		N Ja	0505		N	0.1	50	-	+
F		pic	249	per la	pro a	e experile	3	HTE	10	300		-
		ÊV	wha	nal	egite	and oreco	Le	E	2	100		2
		1-10	non	aeris	jod	1 cores		5	r	Am	1	
	1	1 Star	10		ince	pipio		5	2	200	-	
-	-	to	na	go.	and	19		M	12	20-		-
G		er	-) Gl	0515	SIVI	icircis		2	2	300	2.	
6-		P	SP	212011	um a	Stor D.		N	0.1	50		
F		C	aes	ia i	parvil	1219		1	2	200	O	
F	-		- 0	ans	alac	IIIS.		1	100	SM	0	
6	-	C	SK	dan	deci-	ian.	-	E	19	50	5	
		C	Sec	dia	and			M	G.	100	2	-
F		C	tiche	creat -	othe	rs -		N	0.	1 10		-
T		0	XOUS	s per	renne	5		NI	0	14		_
T		0	PIC	in	now	eanum		N	10.	2 40).	
F	-	3	00110	mone	sem	us.	-	P	0.	200		
6	-	(OPIE	Sherr	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	himlig covolin	nion	a E	0	1 10	2 -	-
		_	MA	Cherry P	100	alongha ba	sivier	va E	- 0.	1 40	3.	-
-		0	(ZEHT		SKir		sis	LITE	EG	2 20	О.	
		2	Sent	ocio	mode	ofscien	55		0	250	0.	
1	-	0	Max	istrii	s du	chooma		1	0	1 20	3	
0	-	-	01	al	Porvisi	019.		E	0	1 4		
L .	-		Jere		0			E	0	1 2	2.	-
		C	on	320	SK.	10		L	0	2 2	0.	
F	-	16	eror	ica	pebu	ia		N	0	12	0.	
E	_	1	oto	a a	asher			N	0	P	7	
C		t	2.1	and	-91-	-057			- 0	1	0	
3	>	1	10	0	- tobe	aig.		2	0		~	-
C		-	2120	1	Queo	anim		1	0	177	U.	
F	-		2010	~ " `	1	1.0.		F	0	1		
		<	Sok	nm	nigh	m		E	0		1	
-			wild	ium	repen	5		L	Im	I	1	
T	-	-	0	sile	hosto	ter		T	i P	-	2	
t	-		ane	0	site.	1-S		T	- 0	. 1	5	
G	5		Jone	2		in sic		F	0	-	L.	
		-	ver	eng	ocra	rensis		-	10	2-1	2	
E	-	1-5-1	Enc	dia	frog	yres	1	-				
T					5			-				
									-	-		
					-							
									Loughie	CE.	- circle co	de if 'to

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	orm			Site Sheet	no:\ 3
-	02 1 10	Survey Name	Zone ID		Recorde	rs
Zone	22 6 18	Blackhill Ind	VZ2	A cave	lloro +	PSmith
56 Easting	CDA 94	Plot ID	83 (280	Plot dimensions	2020	Photo # 3192
369739	6367077	IBRA region	Solney Basin)	Midline bearing	MO	0
Vegetation Clas	s	HUNKI-M	abrino	Irom 0 m	110	Confidence
Plant Communit	ту Туре	1592	- Lotta	a gim	- tales	Confidence:
Record easting and r	orthing at 0 m on midling 1		ree ilc	moerk	EEC:	V H M I

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

ŝ

Trees Shrubs	3
Shrubs	1
Grasses etc.	10
Forbs	11
Ferns	0
Other	3
Trees	36
Shrubs	0.1
Grasses etc.	14.2
Forbs	32
Ferns	0
Other	0.4
	Forbs Ferns Other Trees Shrubs Grasses etc. Forbs Ferns Other Weed cover

	BAM Attribute (1000 m	² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm	HT C	
30 – 49 cm	HH 111 (3	
20 – 29 cm	WHI WHI WICE	0
10 – 19 cm	HTI G	
5 – 9 cm		
< 5 cm		n/a
Length of logs (m ≥10 cm diameter, ≥50 cm in length)	31	

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	0	
Subplot score (% in each)	7585356585	< 2 Lichic (%)	Cryptogam cover (%)	Rock cover (%)
Average of the 5 subplots	69	11.11	00000	9000
litter cover is accorded to the	0	114	\circ	O

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Therphological	Landform	Landform	(optional)			
Type	Element	Pattern	Microrelief			
Lithology	Soil Surface	Soil	Coll			
	Texture	Colour	Depth			
Slope	Aspect	Site Drainage	Distance to nearest			
			Water and type			

Plot Disturbance	Severity	Age	Observational evidence:
Clearing (inc. logging)		0040	e undersee la manual sur
Cultivation (inc. pasture)			
Soil erosion			cnga
Firewood / CWD removal			
Grazing (identify native/stock)			ODIOS GLOSING (GLOS) Indiana tradition
Fire damage		-	strong (atte) In grean Ofeadale.
Storm damage		-	
Weediness		-	Mad wear deale
Other			, or men or a ,

graneled X5

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

MA

				-	Suno	v Name		Plot Identifier			Re	ecor	ders		
400 m ² p	olot: Shee	of _ of	-	0	Surve	, ill h	2	B131780	\mathcal{D}	AC	+ 6	X	>		
Date	4	0 1	D	B	ACH	n'li v	M	Disten				-	T	-	
GF Code	Top 3 na All other	tive spec native ar	ies in nd exi	n eac otic s	h growth species: F	form grou ull specie	ip: Ful s nam	l species name manda e where practicable	atory	N, E or HTE	Cover	A	bund	stratum	voucher
T	10	N-W	bi	a	M	acus	ate	2	_	N	23.	-	1	-	
T	e	sca	-	A	SA	iloic	ose	1		N	10		2		
T	Allo	45	01	ir	A H	woi	105	3		N	JAL I	-	20		-
à	1	an	VA	+ 10	9 (rem	chic	dea		N	14	4	10		-
-	0	ida	2	vr	conto	Bli	9	19 K	-	E	0.1	-	+0.	-	-
6	0	PIIS	m	er	25	aer	m	LS.		N	1	V	2		-
E	<	ole	n	m	n pr	irop	71	ium		N	0.1	1	0.		-
		avho	art	a	ere	cto	5			HIF	5	2			-
E	e	and (an	i	mV	nome	ear	um		2	0.1	-	4		-
r		30	SIG	in	m	"HO	e	docopsic	pm	E	0.1	-	1		-
T		tio	20	no	PIA	ref	Der.	S	-	4	2	S	pu		
-		Ax	3-1	OF	25	Ais	sif	oli-S.		HTE	5	2	PC-		-
E		COR	n	Te	alice	30	ha	neg		F	0.1		40	-	-
F		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	05	20	no	dec	RI	\sim		E	10	-	DC D		-
-		Cer	n	~	5	da	de	sins	_	HTE	O.	-	M	P	-
		60	à	5	ai	ose	1			HTE	0.	1	1	-	-
0		ah	ci	-0	2 0	ilan	des	sting		M	0-		30	-	-
G		60	TIC	m	ens	in	0	ecilis		2	0-1		4		-
G		Cin	h	ris	tilis	d	ich	roman		M	12	2	50	-	-
E		Bar	Dir	2	ella	aus	tr.	-II'S		N	0.4	-	30	-	-
C-	0	7-7 0	er	3	q	(cc)	115	>		M	2	-	20	-	
E		Care	S	ia	à	wi	-lo	rg ,	-1	4	0.2	-	30		-
C-		low	24	d	la	Ain	te	mssb-P	inte	NICA	10.2	-	20		
-		Da	m	ca	0	anci	201	lotal		E	12	-	50	-	
E		in	-cu	S	~	site	zk	5	_	M	0	4	10	-	-
E	1	ries	is	,	Part	our	e?	22xex		M	0.	1	le	-	-
C		mic	10	la	era	St	ip	ides		r'	10	2	30	1	
F	-	site	1	-0	Ne	ac	ter	Nicular		N	0-	1	1	-	-
-		ne	en	-5	e	aye	551	is	_	HIE	0.	1	1C	-	-
F	10	Pie	ct	Var	ini		Par	villors		N	0-	1	4	-	
,		ha	200	a	cens	5 100	shi i	ala		E		-	E C		-
0		Des	m	00	iim	NG	no	-3		M	0-1	T	2		
		20	- 5	201	cra	nig	6	asiliang.		E	0.	1	20		
F	-	in	ale	an	bea	ia	3	ACINS		N	0.	1	20	2	-
-		SP	-ec	cic	o me	Ecla	PS	contensis		HITE	0	1-	12		-
		hi	80	oc	hee	nis	9	labia _		E	0.	1	10	0	-
F		Crie	oli	-	, ce	eser	- Fr	ers	-	N	Q-	5	1	5	-
C		on	cr	11	9 D	ilen	nis	30.00	194	ea C	0	4			
2		roh	er	AC	va	0-	3	lais		T T	0	. 1	1	-	-
1-	-	3	æ	5	21	- 1	100	as homal	ocau	lis N	0.	1	20		

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF – circle code** if 'top 3'. **Gr – circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately $1.4 \times 1.4 m$, and $1\% = 2.0 \times 2.0 m$, $5\% = 4 \times 5 m$, $25\% = 10 \times 10 m$ **Abundance:** 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

Date 12 6 18 Bigdwill Lord V 12	Recorders						
0 01.00MINH 513	AC + PS						
GF Top 3 native species in each growth form groups 5 if			1-				
All other native and exotic species: Full species name where name mandatory	N, E or				1		
2 Post of the second se	HTE	Cover	Abund	stratum	vouch		
Fosteriorn clisters	N	02	20				
selavia parvillorg	-	0.2	20.				
Cardamine cop.	E	0.1	20				
moloidia	E	01	10				
in our carolinana	F	0 I					
	-	0.1	(O)				
					-		
					-		
	-						
					_		
					_		
	-						
					-		
51					-		
					-		
	-				-		
				-			
2							
					-		
				-	_		
				_			
			-		-		
				-	_		
	-						
	_						
					-		
			-	-	_		
	-				-		
				-	-		

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 'over:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 undance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	Site Sheet no: \ 2_					
		Survey Name	Zone ID	Recorders			
Date	22 6 18	Blacchill IND	VZ2	P-SMK	N + A	Carpileo.	
Zone	GOA 94	Plot ID	B14 (281)	Plot dimensions	2020	Photo # 0104	
Easting 369796	Northing	IBRA region	SydneyBasin	Midline bearing from 0 m	355°	-	
Vegetation Class		HUNEY-Ma	dean Dry S	deidh	TIL FOR	Confidence:	
Plant Community Type		1592	- spoked	Standa	EEC:	Confidence:	

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

5

BAM (400	Sum values	
	Trees	2
	Shrubs	2
Count of	Grasses etc.	8
Richness	Forbs	12
	Ferns	0
	Other	
	Trees	50
Sum of	Shrubs	0.3
of native	Grasses etc.	37.4
plants by growth form group	Forbs	1.4
	Ferns	0
	Other	0.1
High Threat	Weed cover	10.6

DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		
30 – 49 cm	HIMM C	
20 – 29 cm	HTHIT O	
10 – 19 cm	(3)	
5 – 9 cm		
< 5 cm		n/a
Length of logs (n (≥10 cm diameter, >50 cm in length)	n) 17m.	

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots) Litter cover (%)		Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)	
Subplot score (% in each)	85 90 70 40 40	252280	00000	00000	
Average of the 5 subplots	67	8.2	0	0	

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:	des
Clearing (inc. logging)			udescribed, no midstere, pro carofy in	agire
Cultivation (inc. pasture)			01000	2.
Soil erosion			cathe tracks	
Firewood / CWD removal		1		
Grazing (identify native/stock)			evidence casille grezing &	
Fire damage			<u> </u>	
Storm damage				
Weediness			mod weed's (know)	
Other				

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

400 m ²	plot: Sheet 2of 2	Survey Name	Plot Identifier		Re	ecorders		
Date	22 6 18	Blackhill ind	514 (281)	AC	1 +	B		
GF Code	Top 3 native species in All other native and exc	each growth form group: Fu tic species: Full species nan	Il species name mandatory ne where practicable	N, E or HTE	Cover	Abund	stratum	voucher
T	ender	tostato (C	lighting modelet	4 P	20	8		
T	erange	us fibiosa	0	N	30	7		
F	eiradi	a hostala		1	0.2	40		
E	Micio	appen shipon	ides	4	20	600		
F	plantia	pipucese	45	N	0.1	200		-
6	paspali	dium disk	7S.	N	MA5	500		
-	5100	rhonb loi	15	E	0.1	50		
F	Saco	m prirophy	1m	N	0.2	10		
0	chigh	da erecto	7	HIF	10	250		
5	(ster	-> gracit	15	N	4	50	-	-
	Plant	go lerca	vala	12	0.7	100	1	
E	nypan	a posiciois	uren 1	E	0.1	10		
E	(aesi	1 persents :		1	0.1	-50		-
F	NRIGOIL	a polopila	2	2	0.1	2	-	
È	altere	ates deal	icida	L	OI	2	-	
0	ahcie	e tobacire	2	N	0.1	5		
	Setor	ia pervitu	pig	E	0.1	20		
F	eirod	ha ktyage	~5	7	0.5	50	-	
F	Wahle	mbergig g	pocilis.	N	0-1	1		
F	pecto	nhvis per	vitiona	7	0.1			
	landa	a camera	1	HITE	0.5	i		
÷F_	dichar	on repes		2	0.1	200		
5	alvappe	x semiba	cala	2	On	10		
5	brand	19 Lillamis	SP COLUME	and	1.0	5		
F	Oxalis	s ferener	5	N	0.1	100	-	
1-	Ger-	seragans	>	HIE	0.1	50		
G	Enter	6 Milling		N	10	400		-
UL	Tondo	A POHLA	59	17	0.1	10		
C	iaman	a difermis	Sh Di Anis	N	61			
4	Acocia	Imprais	The second secon		0.1	1	-	
2	Filler	1 Junior - Cie	1	17	0.1			
	14							
				-				
-							1	
	7							
							1	
	×			10.00				1
	S							

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000,

BAM Site -	Field Survey F	orm			Site Sheet	no: 🔪 💿	2
	-	Survey Name	Zone ID		Recorde	rs	
Date	26 6 18	Blockhill Ind	VZ4	Adam	Canpriller	+ Pr	webe s
Zone	Caa94	Plot ID	BOD 5 (282)	Plot dimensions	20,20	Photo #	0113
Easting 370107	Northing	IBRA region	sodney Besin	Midline bearing from 0 m	110'		
Vegetation Clas	s	Hunter-N	norban Dr	- sper	Anni fer	at co	onfidence:
Plant Communit	ty Type	1592-5	ported gr	n- red	EEC:		M L
Record easting and r	northing at 0 m on midline. I	Dimensions (Shape) of 0.	04 ha base plot	ieve	re	(H	ML

at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

(40)	0 m ² plot)	Sum values
	Trees	3
	Shrubs	1
Count of	Grasses etc.	4
Richness	Forbs	8
	Ferns	0
	Other	1
	Trees	27.1
Sum of	Shrubs	1
of native	Grasses etc.	35.2
plants by	Forbs	1.4
form group	Ferns	0
	Other	0.1

	BAM Attribute (1000 m ²	plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		
30 – 49 cm	HT HT I	
20 – 29 cm	HT III 9	
10 – 19 cm	III (4).	
5 – 9 cm		
< 5 cm	A STATE OF STATE	n/a
Length of logs (m (≥10 cm diameter, >50 cm in length)	I THE HE HE I	(G)

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)	80 50 70 60 80	502055	00000	00000
Average of the 5 subplots	68	7	0	7770

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)		1	
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

400 m ²	Not: Sheet 2 of 2 Survey Name Plot Identifier		Re	corders		
Date	26 6 18 BLACKHILL NO BIS.	PC	- *	25	14	
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher
T	country a macilata	N	25	10	-	
T	twiangle Abiosa	Z	2	1		
3	melalara adosa.	4	1	1		
T	milliaga longilong.	7	0.1	i		
G	perpetedium tadistas.	7	20	500		
G	Michleena straides	N	VADAS	500	-	
	sida vhombalaria.	E	O.S	200		
	(entrys clarebstimm	HTE	40	1000		1
	Plantago knce okata	E	10.5	200	-	-
F	plata proviascens.	M	0.5	300	-	
F	Fraided trigons.	4	0.2	SO		-
F	Commelina righea	4	0.2	100		
	hypachaeris radicates	E	0.2	50.		-
	erharta erecta	HUE	OI	300	-	-
1	Gradon dactrion	E	0.5	200		-
	sorons sep.	E	0.1	10.		-
	senecio madagoscanesis	HITE	0.2	50.		
G	inder-s alocitis	N	1.0	30		
F	Oxalis perenners	M	0.1	40		-
F	Solon propylium	4	0.1	4	-	
F	velonia pebella	M	0.1	3	-	-
	Pospern diatan	HTE,	0.2	20		-
6-	Idvandia Piliformis subsp lintor	MISN	0.1	2		-
F	Eiraolla hestalg	M	01	0.	-	
F	COLUIG SPP.	M	1.0	5		
	gricbous africans	E	0.1	10		_
0	hardenbegia violcea	N	0.1	1	-	
	paranchia brasiliana.	E	01	420		-
	opensig spp.	HTE	0.1	12	-	-
		-	-	-	-	-
		-	-	-	-	-
	11	-	-		-	-
		-	-		-	-
		-	-	-	-	
		-	-	-	-	
		-	-	-	-	-
		-	-	-	-	-
		-	-		-	
		-	-		-	-

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic GF - circle code if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

		- entit			Site Sheet	no: \ 2
-	17 1 10	Survey Name	Zone ID		Recorde	rs
Zone	20 6 18	Slockhill Ind	NZS	A-Gr	alloro +	PSmik
So	GDA 94	Plot ID	B16 (285	Plot	20+20	Photo # 3110
<u>369264</u>	6366496	IBRA region	Basin	Midline bearing	2650	Dug Pug
egetation Clas	s	HUNRIN		from 0 m	313	1 Careful
lant Communit	ty Type	1592 - 690	ted and	science	Phyll Fore	St. H M L

signation and a control midlifie. Dimensions (Shape) of 0.04 ha base plot.

Sum values
0
11
5
0
0.1
0
14.5
0.9
0.1
1.0

	BAM Attribute (1000 m	² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		//
30 – 49 cm	/	/
20 – 29 cm		
10 – 19 cm		
5 – 9 cm		
< 5 cm	///	n/a
_ength of logs (m) ≥10 cm diameter, 50 cm in length)		

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Designed		
Subplot score (% in each)	2051524	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Average of the 5 subplots	150000	5/4/05/05	2000	00000
Litter cover is assessed as the average		15	0.2	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Type	candiorm	Landform	gernent Zone (optional)
Lithology	Element Soil Surface	Pattern	Microrelief
Lititology	Texture	Soil	Soil
Slope	Aspect	Colour	Depth
		Site Drainage	Distance to nearest

ot Disturbance	Severity	Age	Observational evidence:
learing (inc. logging)	oout	coue	
Iltivation (inc. pasture)			10 concept, glassical nexts thack
l erosion			
wood / CWD removal			
Ing (identify native/stock)		-	denic e a lla
amage			corres cettle grozing
damage			
iness			
r			mor need desity.

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

	77	A Marrie	Plot Identifier		Re	ecorders		
00 m ² p	lot: Sheet Lof	Survey Name	Bla	AC	+	PS		_
Date	26 6 18	Blackhill Incl	DIO.	10		T		
CE	Top 3 native species il	n each growth form group: Ful	Il species name mandatory	N, E or	Cover	Abund	stratum	voucher
Code	All other native and ex	otic species: Full species nam	ne where practicable	HIE	100	200		
(-	Paspola	dium disk	-S.	N	IC	500		
-	Avorof	es fissilon	5	HIE	15	200		-
-	Raibrie	ching mack	7	N	6	100.		-
5	land	a cooleria	the multiple	N	0.5	40	-	-
7	100 mdo	n daction		E	ACD	U ISOC	X	-
	Groot	mus chica	ns	E	0.5	30		-
	Sporon	she blown	11	1	0.1	20.	-	-
5	Elagic	nta tradi	4	2	0.2	20.		-
5	Interne	ia madaa	sconesis	HITE	0.2.	50.	-	-
-	Sena	10 macag	in	HTE	O-F	50		-
	pagoi	un aller	rata	E	1	100	2	1
	hypaci	noers rach	and late	N	0.5	>200).	
F	chrys	ocephain	aprovent	E	01	5.		-
	Sida	(hombite	119	N	01	30		
6	ansti	da vegene	andre	N	P1	100		
6	mide	slaera shi	fores	N	01	20		
F	(01,10)	SPR.		N	0.2	20		
6-	POA	affinis		1	0.2	20		
-	herb	sp. 2 (ose	acea)		0.1	20		-
6-	diane	pichne s	.PP	N	01	10		
0	acon	ago britor	ola,	F	0.2	110	-	
ſ	ture.	3 homaloc	culis.	N	0.	1 10	-	
5	100	is appealing	5	M	0.1	40	*	
6	Gla	is dade	Stimm	HTTL	= 0.1	5		
-	(each	as Dowific	6	E	0.1	12	-	-
	the line	muc Pillion e	andexicalle	- HTE	EO.	15		
-	hen	100 involu	xrat-S	4	0.	15.	-	_
F	ecr	als filor	353 GURANK	2 4	6.	11		-
T	ela	Junia dia	milla	4	0	1 1		-
F	- GR	and when	lic	2	0.	1 1		
C) esh	epris lance	s	N	0	15		_
F	Oxe	ALS PERETTY	doen	N	0	IC	5.	
E	Cher	Jonnes SI	built	43	0)-	1 20	>	
G	- Licq	rostis elonge	te.			1		
	0							
	14							
				-				
	200 C				-			
-							-	
_	1			TE, high thro	at exotic	GF -	circle coo	de if

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	orm			Site Sheet	no: 13
		Survey Name	Zone ID		Recorde	rs
Date	27 06 18	BHUILING	VZ(6)	A.CNH	ALLARO	1P. Smith
Zone	CDA94	Plot ID	BO17 (284)	Plot dimensions	20.20	Photo # 0124
Easting 369700	Northing	IBRA region	Syd basin	Midline bearing from 0 m	30	50
Vegetation Clas	s	Huner-m	adieary Dry	schop	mil log	Confidence:
Plant Communit	ty Туре	1589- 2	Chogony-9	ver gr	gras EEC:	1 Confidence: H M L

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

BAM (400	Attribute m ² plot)	Sum values
	Trees	
Count of Native Richness	Shrubs	4
	Grasses etc.	9
	Forbs	15
	Ferns	
	Other	9
	Trees	66.5
Sum of	Shrubs	11.3
of native	Grasses etc.	826
vascular plants by growth form group	Forbs	7.9
	Ferns	0.5
	Other	2.7
High Threat	Weed cover	26

DBH	# Tree Stems Count	# Stems with Hollows
80 + cm	#	$()$
50 – 79 cm	111 3	
30 – 49 cm	447 3	
20 – 29 cm	1111 (4)	
10 – 19 cm	11' 2	Sec.
5 – 9 cm	11 2	
< 5 cm	HTI C	n/a
Length of logs (≥10 cm diamete >50 cm in length	s (m) Htt Htt	

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)	25 25 30 4520	512210	00000	00000
Average of the 5 subplots	29	4	0	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological Type	Element	Pattern	Microrelief
Lithology	Soil Surface Texture	Soil Colour	Soil Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			Obvous historic cipance, w/ a dew lige old the es
Cultivation (inc. pasture)		1	lasts millstrey (netre)
Soil erosion			
Firewood / CWD removal		1	
Grazing (identify native/stock)			Signs of avaring netweg cattle + Graninel distribuce
Fire damage	100 million		Badyo Badyo
Storm damage		-	
Weediness			High dansty landers, Particularly adjacentle Cite line.
Other			a grand we all and a strange

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

400 m ²	plot: Sheet 2 of 3 Survey Name Plot Identifier	1	Re	ecorders		
Date	27 06 18 R/H.II Ind BOIT	A.CA	VALAN	10/1	losn	n
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher
T	Eucalyptus, fibrosa -	2	1	1		
+	contriba maculata	N	30.	TAI		
T	Evanplis amenoidles.	N	0)	2	-	
T	EUCAFIPUS · poniculated	N	20.	2		
5	meialeuca syphelioidies	R	10.	11	_	
T	Evalues. preticovnis -	N	5.	1		
	latana camarg.	HTTE	35	13	_	
0	glycine clandestra	7	0.5	2200	2	-
G	micropena stipoides.	N	70.	2000	-	
F	dichandla ropens.	N	0.5	200	2.	
F	Ox-lis peremons	N	0.2	400	۶.	
	planlago ioneeoptala.	E	62	60		
F	plana puperlasces	N	0.2	200	-	
G	oplishens genuls	2	10.	1000		
	sida inomballol19.	E	0.2	300		
	- spolotools efficiency.					
0	parotoreg pandolang.	5	05	BIC	0	
6	pospabolim olistans	N	1	500	-	
F	pseudoantherm variables,	N	ezo.9	100	-	
F	Capsia. ponitida.	4	01	20	×	
1	hypachaeris (odicata.	E	0.2	50		
F	Binoniella a-stiolis	4	2	200	-	-
0	Desmodium Vorians.	N	0.2	SO		
	Serecio madegraphesis	HIE	0.5	100		
F	pretanthis paivillog.	2	1.0	5		
G	juncis ushours.	N	1.0	20	•	
-	pospor diabet.	HTE	0.1	5		-
G	endesia stricta.	5	1	300		-
0	Voet flophore barbata	N	0.1	20	-	-
Ŧ	Commenter compag	1	0.5	100		-
0	estreps letionus	M	0.5	20		-
	sendation secondation	HIE	0.1	10	-	-
0	parsonal stamines	T	1.0	10		
F	Vernonia cirerea	T	1.0	20.	-	-
F	spes-becking orientals	N	0.1	20	-	-
0	septiona poporca	N	0.1	1	-	-
F	Som propying	M	01	1		-
T	notelaed langholly.	1	0.5	2.		-
0	hordenbergia violates	N	01	200		
	granops lissions.	HIE	0.2	20		

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF – circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63×63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4×1.4 m, and $1\% = 2.0 \times 2.0$ m, $5\% = 4 \times 5$ m, $25\% = 10 \times 10$ m **Abundance:** 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

400 m ²	plot: Sheet of Survey Name Plot Identifier	1	Re	ecorders		
Date	27 6 18 Rlackhill Ind BIT	PS	书	A	C.	
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher
G	CIPALS SIGUIS	N	0.7	30.		
G	cholosia megineta.	N	01	30.		
	Chrimania erecta	HTE	0.1	SO.		
0	discover transversa	R	0.1	5		
F	Kareta demodium ryhidophyw	nN	1.0	1.		
S	Benia oblangileria	Z	0.1	3		
S	BUSGIS SPIOS	N	1	5.		
E	adminingenipoars a	2	0.5.	ico.		
G	Iomandia limbornis subsp. limb	mish	01	2.		
S	Dennomia silvestris	N	0.2	5.		-
F	yeronica perbeila	N.	0.1	3		
F	geranium homeanm	2	0.1	4.		
0	Hibbertia: Scades.	2	0.1	1		
F	Dianella ravuea vor. protota.	M	0.1	5.		
0_	gethoplesim grossn	N.	1.0	1		
G	third pogen caesipatites	2	1. O	3.		
	<u>8</u>					
	M	1				
	75					
		1				
				-		
	12					
	-					
	3				1	
		-				_
	28 C		-			
_						
		-				
			-			
		-				
		-				-
		-		-		
			-			
		-				
						· · · · · ·

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	orm			Site Sheet	no: \ 3
		Survey Name	Zone ID		Recorde	rs
Date	27 6 18	Badhillind	VZ1	A.ca	birio x	P. Smith
Zone	LOA94	Plot ID	B18 (285)	Plot dimensions	2020	Photo # 0131
Easting 310650	Northing 6368123	IBRA region	sydnes Best	Midline bearing from 0 m	80°	
Vegetation Clas	s	HUNKY-M	ockay Dy s	SCREPHIN	failest	Confidence: H M L
Plant Communit	ty Type	K92-58	red lions	ark	EEC:	H M L

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

Attribute m ² plot)	Sum values
Trees	3
Shrubs	4
Grasses etc.	16
Forbs	11
Ferns	
Other	4
Trees	40
Shrubs	0.9
Grasses etc.	70.3
Forbs	1.5
Ferns	1.0
Other	04
	Attribute m ² plot) Trees Shrubs Grasses etc. Forbs Ferns Other Trees Shrubs Grasses etc. Forbs Ferns Other

	BAM Attribute (1000 m ²)	plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		
30 – 49 cm	WY III 9	
20 – 29 cm	HI WALLA III CE	
10 – 19 cm	1 2	
5 – 9 cm		
< 5 cm		n/a
Length of logs (≥10 cm diameter >50 cm in length)		HT HIT LIT

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)	75853555	5240100	0000	00000
Average of the 5 subplots	67	11.4	0	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			Ras dearing imited modsbrog.
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)		()	some graing - less longered to allow plas
Fire damage			
Storm damage			
Weediness			Some langua - low head speces.
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe Allot did not have adobtional specie No difference by year areather

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

gonal

Observed alo

- Species

400 m ²	plot: Sheet 2 of 3 Survey Name Plot Identifier		Re	ecorders		
Date	27 6 18 Blackmill Ind BIS	AC	+65	>		
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher
1	Corymbia Mac-A-9.	1	ON B	132		
T	eranpes Abiosz.	7	25.	9		1
T	eurappies spensitoria	4	5.			
G	miciologara stipoides.	7	40	1500		
	Aronopus lissilarus.	HTE	1.0	30		
G	enoisia sticia.	4	10.	300	+	
	spolopolus allians.	E	0.2	250		
	sida montoibili9.	E.	0.2	100.		
F	Oxolis perenners	1	0.1	200		
0	glycine micophylia	N	0.1	30		
F	platia pipiases.	N	0.5	400		
	plantago jancolat9.	E.	0.1	50.		
G	popeladium distans,	7	an1	300		
G	ionardya filliforms ab filliform	5.N	0.3	50		
G	lanordia nuttillog.	N	0.2	20		
G	themeda trianol19.	N	0.2	20.		
G	10mard in glauca	N	02	20.		
G	aprilian Simile	N	0.1	20.		
F	Vernonia cinerea.	2	0.1	50.		
G	junces which s	N	0.2	50		
0	glycine clandesting	N	0.1	10.		
G	ptiloliwiy deusia.	N	0.5	50.		
E	cherknihes sieben	N	0.1	20.		
F	Wohlenbergig Communis	N	1.0	10.		
S	Cossing uncorth.	N	0.2	5		
F	Veronical pebella	N	0.1	4		
F	eiradia hastala.	N	0.1	20.		
S	Bulsonia spirosa,	N	0.3	4.		
	Jorba Canaa.	HTE	1 1	124		1
G	Capers Spp.	N	01	1		
G	fimplishis dichotoma	N	0-1	20.		
0	horderbega violacea.	N	01	10.		1/
F	goodenia hederacea sub	N	0.1	30.		
G	lepidosperma lakate.	N	0.2	20		
S	acacia facata.	N	0.1	5.		
G	chstola vagas	r,	10	700		
S	Daviesia Licibity.	1	0.2			
6	echi-opogon caespitoss	N	0.1	10.	/	
	Cercivis clarolestimm	HE	6.1	20		
0	prositiona horbehona	N	0.1	2		

GF Code: see Growth Form definitions in Appendix 1**N:** native, **E:** exotic, **HTE:** high threat exotic**GF - circle code** if 'top 3'.**Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63×63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4×1.4 m, and $1\% = 2.0 \times 2.0$ m, $5\% = 4 \times 5$ m, $25\% = 10 \times 10$ m**Abundance:** 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

Date	Survey Name Plot Identifier		R	ecorders		
Duto	ET & LS Blackhilling B18		Ac	+6	S	
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher
F	Serecio mologoscalesis	HTE	31	10.		
F	Spiann prinopigium	4	0-1	5.		
	enthata electa.	HTE	0.5	100		
E	hypachaers radicala	E	0.2	30.		
0	Commelling chaneg	N	0.1	40.		
-	printingen, & euchilla.	N	0.2	2		
FT	Rupperin allactaum	HTE	1.0	2		
G	Bignoniella australis	N	1.0			
F	citers Sanis.	N	0.1	10.		
	lotury the	N	01	0		
						1
					1.1	
-						
-						
-						
-						
-						
-						
						-

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	orm			Site Sheet	no:) 2
		Survey Name	Zone ID		Recorde	rs
Date	27 6 18	Backhill Ind	NZA	Adam	MAIRO	+ P. Smith
Zone	CDA 94	Plot ID	B19 (286)	Plot dimensions	20720	Photo # 000
<u>370671</u>	Northing 6367606	IBRA region	Sjanes Basin.	Midline bearing from 0 m	290	0.
Vegetation Clas	s	Huster-Ma	allean Dr	Spens	mu fae	Confidence:
Plant Communi	t <mark>у Т</mark> уре	1592		> -1-06	EEC	Confidence:

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

BAN (400	1 Attribute 0 m ² plot)	Sum values
	Trees	3
	Shrubs	2
Count of	Grasses etc.	5
Richness	Forbs	8
	Ferns	0
-	Other	3
	Trees	45.1
Sum of	Shrubs	0.2
of native	Grasses etc.	20.7
plants by	Forbs	1.1
form group	Ferns	0
	Other	0.5

	BAM Attribute (1000 m	² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		
30 – 49 cm	(I) I VAT UM	
20 – 29 cm	INI INI (12)	
10 – 19 cm	11 2	
5 – 9 cm	1	
< 5 cm	/	n/a
Length of logs (≥10 cm diameter, >50 cm in length)	(m) MUINTININ	11 (19)~

Counts apply when the number of tree stems within a size class is \leq 19. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)		Litte	r cov	er (%))	Bai	e gro	ound	cove	r (%)	Crypte	ogam cover (%)		Rock cover	(%)
Subplot score (% in each)	70	25	40	90	80	K	10	10	0	5					(70)
Average of the 5 subplots		6	1	110	~			5	-				1		-

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography	i + site features that may	y help in determining	PCT an	nd Management	Zone (or	otional
		the second se				2 M P M P P P M P P P P P P P P P P P P

Туре	Element	Pattern	Microrelief
Lithology	Soil Surface Texture	Soil Colour	Soil
Slope	Aspect	Site Drainage	Distance to nearest

Plot Disturbance	Severity code	Age	Observational evidence:
Clearing (inc. logging)	3	16	Nea Send your looks reconstrant & IOF
Cultivation (inc. pasture)			and they down the states the states
Soil erosion			10
Firewood / CWD removal		1	
Grazing (Identify native/stock)	3	1	Cattle acesare entered a later data
Fire damage		-	conceptual chicosive. Todas masterey
Storm damage		1	
Weediness			Man anti-
Other			int come gassion

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

100 -2-	nlot: Sheet of 2	Survey Name	Plot Identifier		Re	corders	-	
Date	17 06 18	Blackhill nd	BIQ	A.CA	ALL ARO	PS	mith	
GF Code	Top 3 native species ir All other native and ex	n each growth form group: Ful otic species: Full species nam	ll species name mandatory ne where practicable	N, E or HTE	Cover	Abund	stratum	voucher
1	Exclotion	fibrosa		N	25	6		-
T	Carindon	marsiata		N	20	5	-	
	Sida Tha	mbildia		E	0.2	100	-	
G	Paspaladum	distan		N	15	500		
F	Pratia Pr	undurscens		N	0.2	50		
F	Encoder	hastata.		N	0-1	50		-
	Axonopus	fissifolius		HIE	0-2	10		-
G	Microlean	~ shpoides		N	Autos	160	-	-
	Cynodan	dactulan		E	12	100		-
	Solanum	nifrom		E	Un	10		-
_	Hypochaer	is rediation	*	E	0.1	50	-	-
	Senecia	SP		E	0-1	10	-	
	centre	5 cland	estinum.	HIE	10	20	-	
Ŧ	Campelin	a cynea		N	0-1	200		-
G	Cypres	graditio		N	Gar	0		
6	Evitolazia	strata		N	0.5	10	-	
F	Encodia	triggynus		N	0.1	G	-	
O	Cilyane	clandesting	2	N	Del	10	1	1
F	Oxielis	ferannens		N	0-1	16		
F	Solarum	primo phyllo	m.	N	0.4	120		
	Serecto	madegescare	1517	NE	0-	E		
F	Cotola	58 01.		D	6.1	2		
1	Notelea	- longitolic		N	Bil	1		
G	Lonanelre	- multitlane		11	0.2	120		
0	fanctores	- pandare	~~	N	0.2	30		
0	lesnadu	In Utivians	d t amb	UTE	25	200		
-	- Charles	E CARCER LA	wharig evely	N	0-1	1	1	-
-2	Bursaria	spress		E	Ori	i		
6	Date	1. Str. Anni		N	0-1	1		
F	Recontin	lincolate	,	王	6-1	10		1
	Dianago	- Sulustas		N	0-1	1		
-	Cat	= sylvesins		HITE	0-1			
	Cestion	handor				t		
1			/				-	
		/			1			
						_		
	10		4					-

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic GF – circle code if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately $1.4 \times 1.4 m$, and $1\% = 2.0 \times 2.0 m$, $5\% = 4 \times 5 m$, $25\% = 10 \times 10 m$ **Abundance:** 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

Data			and the second se			10. 1 5
	21 10	Survey Name	Zone ID		Recorde	rs
Zone	C16 10	Backhill Ind	VZ2	Adam	CONDIGIO	+ P Smit
Fasting	CO194	Plot ID	820 (287)	Plot dimensions	20720	Photo # (3142
120150	5366993	IBRA region	Stone?	Midline bearing	1100	0143
legetation Class		HUNKLAM	don a to a	from 0 m	10	Confiden
lant Community 7	Гуре	Kas	and My	deloph	JII fore	

biotening and hordning at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

Trees	1
11000	6
Shrubs	1
Grasses etc.	15
Forbs	16
Ferns	1
Other	5
Trees	36.2
Shrubs	0.1
Grasses etc.	17.8
Forbs	13.6
Ferns	0.1
Other	1.3
	Shrubs Grasses etc. Forbs Ferns Other Trees Shrubs Grasses etc. Forbs Ferns Other

	BAM Attribute (1000 m	² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm	1	1
50 – 79 cm		
30 – 49 cm	11 (2	
20 – 29 cm	MUNUIL (12)	1000
10 – 19 cm	MA MAI (W)	
5 – 9 cm	THU (5)	
< 5 cm		n/a
Length of logs ≥10 cm diameter ≥50 cm in length)	(m) MURMINI (14)
Counte apply who		

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Post and in the		
Subplot score (% in each)	38520 × 45	bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Average of the 5 subplots	5700	00000	00000	0000
Litter cover is assessed on the		4	\mathcal{O}	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Type	Landform	Landform	(optional)
Lithology	Element Soil Surface	Pattern	Microrelief
cialology	Texture	Soil	Soil
Slope	Acrest	Goldar	Depth
	Aspeci	Site Drainage	Distance to nearest

Plot Disturbance	Severity	Age	Observational evidence:
Clearing (inc. logging)		Coue	Cred Ala
Cultivation (inc. pasture)			fast cleaning, limited mid starty
Soil erosion			
Firewood / CWD removal			the gland in places.
Grazing (identify native/stock)			MUR OLOTIS
Fire damage		-	and years.
Storm damage		-	
Weediness			La Marchale A
Other			long thillers of known - some grand wear

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

		,2	Sun ev Name	Plot Identifier		Re	corders		
0 m ² p	olot: Sheet 4		Di containe trad	2000	AC	MS			
Date	616	10	Blacemill Ing	10-		<u>r</u>			
GF	Top 3 native sp	ecies in	each growth form group: F	ull species name mandatory	N, E or HTE	Cover	Abund	stratum	voucher
ode	All other native	and exc	otic species: Full species na		N	5	1		
T	Corymbic	n n	naculata		N	20	1		
T	Evealyp	NS.	Subrora		N	5	1		
1_	Eventy	tur.	lancolation		N	1	2		
T	Notelea	lon	gitalizy		LIFE	25	19		
	Lantane	Ca	nara		F	0-5	30		
	Sida	rhe	ombitalia		N	15	100		
G	Merole	tina	Stypoides		N	5	100		
6	Paspal	adiu	in clusters		Þ	Ĩ	50		
1	Ehrha	ta	erector		D	0.5	100		
0	Colyan	ne	clandestina.		1	1	900		
F	Gratia	- P.	urpuricens		N	0.2	50		
F	Biune	onell	a australis		N	04	100		
G	Then	neal	a trianala	-	N	0-1	2		
6	Cypre	-35	great 13.	N.C.	N	0.1	5		
F	Revola	ant	homium UC	ruble	E	6-2	- 20	-	
	Plante	20	lancelat.		E	5	156		
	Cynod	cm	dactylan.	0	N	0.5	30		
C	Coles	SM	mus anota	15.	N	G	10		
F	Solan	wm	- prinophylum	~	N	0-1	30		
F	Coasie	~	panuitlema		D	0-7	- 15		
F	Enad	ua	haster	- 0 101	N	0-1	2		
C	- Loma-	de	a filling	Conternitowa	N	0-6	20)	
F	Comme	elin	open		N	G-1	3		
F	Diane	la	pevolute.		11	Del	2		
C	Pana	n	milie		1 J	Del	10)	
G	. Sonce	15	Usitativs		N	Des	50		
	Seter	in	parvillar		N	Del	10	2	
E	Chelc	with	s sieben		F	00	20	2	
	Sparo	polo	is atricants.	15	N	0-	12	_	
F	- Oper	when	na disphylle	L.	N	0-	IE	>	
6	- Dick	lala	acre sp	-	N	0-	12	- 11	
F	Vio	19-	_hederater	1	-	0			-
-	-60	de	nic		N	0.	1 3	2	
C	- Impe-	ale	- cyludrica.		N	C	IC		
C) Desr	nodi.	un voriane		N	0.	1 3		_
Ŧ	- Wahl	lemb.	aga comme	2-5	1	0.	2 4		
C	- Long	- d	ra filitor	.0.	N	0.	1 70	22	
Ŧ	Oxali	3	perenno		N	0.	16	5.	
F	= Ruin	ex	spin.	2.6		En	0 5	0	_
	A	-	US \$1551-01	15.	HI		CE	ircle cor	le if 'ton '

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic GF – circle code if 'top 3'. Cover: 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

Date	27 6 19	Survey Name	Plot Identifi	or				in of infierr	a
05		2 Badhill Inc	· B20		1	R	ecorders		-
Code	Top 3 native species	in each growth form and	120		AC	+	K		-
5	and e	xotic species: Full species na	ull species name man	datory N	Ean			-	
	Stiphoton	ic Purch	ine where practicable	H	ITE	Cover	Abund	stratum	T
	Kaspalun	ditat	1	1	J	60		suatum	1
	Verher	b.	highton	LT	V=	0.1	6.	П	
	Solanum v	unich	5	F		0-1	10	4	1
	Seneelo	- John		E		0.5	30		
	Modeal	madagascents		N		0-1	1		
F	Diegod	= cercliner	19	TU	6	0-2	30		
6	Anshal	repers.		1E	- 10	2.2	10		
F	Plact n	vagan?		N		2-11	0		-
0	Kanne	5 partiflens.		N		25:	20		-
FT	Pinelia	prostates.		P	C	0-7	2		-
	Ender	nutans:		N	C)-1	1		-
5 1	Rubberb	A 50		N	0	-5 8	20		-
	Catil.	maere.		E	C)-2 K	0		-
AT	Orola -	SP '		N	e	223	0		-
	Mac Su	elo?		E	C	0-1 2	a		_
	plane	takon	,	N	0.	1 5	-		_
	Madenber	gia introla	1	N	10	LS L	-		_
	Linsiv- 1	Jula a	R I	N	0	1 2			_
	hdigool	are and	1	E	0	1 7			
	Eucatytu	2 acho	chan	N	0.	1 1		-	_
	11	ienon	cles	N	5	17			_
-									
-									
							1		
						-			
									1
						-			1
									1
									1
									1
					_				1
								-	
-									
-									
-								-	
								-	

2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25,100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

BAM Site -	Field Survey F	orm	-		Site Sheet	no: 👔 📄	3
		Survey Name	Zone ID		Recorde	rs	
Date	3718	Blackhillind	VZ1	Adam	Cavalla	6 1	P.Smn
	GDA 94	Plot ID	B21 (288)	Plot dimensions	20720	Photo #	132 13140
Easting 370458	Northing	IBRA region	spares.	Midline bearing from 0 m	15°		
Vegetation Clas	s	HUNEY-M	acted Dis	Scielde	Mon fore	St Co	onfidence:
Plant Communi	ty Type	1592-300	offed gom- re	d ironba	EEC:		onfidence:

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

BAM (400	Attribute m ² plot)	Sum values
	Trees	7
	Shrubs	6
Count of	Grasses etc.	8
Richness	Forbs	16
	Ferns	-
	Other	9
	Trees	67.2
Sum of	Shrubs	1.9
of native	Grasses etc.	21
plants by	Forbs	7.8
form group	Ferns	-
	Other	3.5
High Threat	Weed cover	551

	BAM Attribute (10	000 m ² plot)	
DBH	# Tree Stems Count	# Ste	ms with Hollows
80 + cm		. 1	
50 – 79 cm	u	21	\bigcirc
30 – 49 cm	UT UT	i)	
20 – 29 cm	UNT UNT UNT IN I	D	
10 – 19 cm	un un mi	14)	
5 – 9 cm	in min (i	Ð	
< 5 cm	1111 0	Ð	n/a
Length of log (≥10 cm diamete >50 cm in length	s (m) r,		

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground	cover (%)	Crypto	gam c	over ((%)	1	Rock	cove	r (%)	
Subplot score (% in each)	65408600	000	00	OC	00	0	0	0	0	0	0	0
Average of the 5 subplots	64	2	_		0				0	5		

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Туре	Element	Landform Pattern	Microrelief
Lithology	Soil Surface Texture	Soil Colour	Soil Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			no midisterer minimal undescribbed
Cultivation (inc. pasture)			
Soil erosion			cattle work.
Firewood / CWD removal			
Grazing (identify native/stock)			less glozia by cattle manpholivery.
Fire damage			
Storm damage			
Weediness		-	weedy notevisice (enhance) & lantara
Other			SE Sole. 1

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

400 m ² r	olot: Sheet of Survey Name Plot Identifier		Re	corders		
Date	3 7 18 Blackmill Ind B21 (258)	1.0	valia	16 +	P.Sr	with_
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher
T	Cortinha maculati.	4	B.	6		
T	Evalges molucang	2	25	2		1
T	Eurolights acmancides	4	15.	6		
T	Evaluation particulation	M	10	13		
5	Rubana spross	2		10.	_	
	lantona cawara	HIE	5.	4	-	
5	& source semigerum	N	0.5	50		-
	Evhovia evada.	HTE	50	1000	2	
F	Bunionella astralis	4	5	100		
F	Plana purpulasesans.	4		500.		
0	affire chardesting	2	0.2	100		
0	Contration Clanghold	4	0.5	100	-	
F	Altonitors parvillares	4	01	30.		
F	Vernonia. cireres	4	1.0	30.	-	
0	pandarag penderana	N	2	50	-	
F	dichandre repens	2	0.5	100		-
F	lingdia hostata	2	0.1	20.		
6	microhena slippides	2	0.5	300		
	sida vhanbi-laig.	E	01	200		-
1.5	hypochaevis radicata	E	01	50.		-
6	enorsia shida	N	01	100.		
F	Solonum primophyllum	M	01	30.	-	
E	opiismens semuls	N	02	. 200	•	
C	paspolodim distans	2	0.5	200	-	
F	Viola hederaceg.	2	01	Ю.	-	-
0	Desmatium vanas.	2	0.1	100	-	-
C	I anadua Allifermis sub fillifam	SP	0.1	10.		-
C	Cypers gradis	N	0.5	> 50	-	-
	Plantago igreestata	E,	01	20		-
F	Caesia ponillora	2	0.1	50		-
F	Oxenis peremens	2	01	50	in .	
0	e-streph-s johlbhis	2	01	30		-
5	Maytens silvestis	4	0.1	13		
F	solerogame bellioides	N	0.1	5.	-	-
-	speichers officens	E	0.1			-
0	apmotis anistata	2	0.2	820).	-
T	Eucaliptus priciala	AN	\$2	-14		-
0	geitroplesium gmosum	14	0.2	10		
0	hordenbergia violacea	4	0.1	5.		
T	C Paningsis and continidos	N	0.1	1		

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic **GF – circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63×63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4×1.4 m, and $1\% = 2.0 \times 2.0$ m, $5\% = 4 \times 5$ m, $25\% = 10 \times 10$ m **Abundance:** 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

Date	371	× er	addadd	TIOL	identiller	-	F	Recordere		
		0 0	noemili inc	1 82	C288) A-Co	Nella		De	0
GF	Top 3 native specie.	s in each	growth form and			the de	in stilles	10 1	1.2	inv
Code	All other native and	exotic sp	ecies: Full species n	Full species na	me mandatory	N, E or				
F	Blacm	Scan	-a M.	and where pre	acticable	HTE	Cover	Abund	stratum	vouch
F	Conn	Qu'	re mic	しまたの	19	N	0.1	20		
S	dania	enr	a go	ea		2	01	20		
5	- to Dike	m	'S hirts	elins		N	0	20		
-	indigo	lera	ostai	is		N	0.1			-
	Scree	io c	nobacs	coned	<	INT	0.1	1		
2	Iomana	Na	makil	er ind	ba Davie	HIE	0.1	10.		
5	Digite	ic	anili		esult Olk	7 1	01			
F	eight	â	formate	sia		N	0.1			
	Solan		1 gaos			N	0.1	2		-
	CIPINI	m	udr.m			E	0.1	1	-	
2	501000	1010	- excor	.55		4	01			-
2	-ancol	exa	on hav	venar	Lm	N	01	1	-	_
	olein	ania	s diph-	Ma	-	J	0.1	1		
-	30 km	-m	Pada	MC	~	-	0.1	2		
-	Sige	SPE	en al	Balan		E	0.1	1		
5	Acade	ela	racio	CHEI	0.	N	0.1	1		
			June .			N	0.1	4		
							1			-
							-			
-									-	
-										
_										
-										
1							-			
										-
	_									-
-										_
		_								
-										
						-		-		
_									-	
										-
										-
										-
								-	-	_
						-				
-								-	_	
1				_						
1-										-
11.										-
	-	-							_	_

N: native, E: exotic, HTE: high threat exotic **GF – circle code** if 'top 3'. ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	orm			Site Sheet	no:1 2
		Survey Name	Zone ID		Recorde	ers
Date	2 8 18	Bhill wals	* VZ=\$5	and	ne sr	nit
Zone	LDA 94.	Plot ID	322 (331)	Plot dimensions	20,50	Photo #
Easting	Northing	IBRA region	Bosin.	Midline bearing from 0 m	206	0
egetation Clas	s	Huner-Mai	dran Dry S	deropm	11 Fores	Confidence
Plant Communit	у Туре	1592	9 9		EEC:	Confidence

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

BAN (400	1 Attribute 0 m ² plot)	Sum values
	Trees	2
	Shrubs	-
Count of	Grasses etc.	
Richness	Forbs	02
	Ferns	
	Other	-
	Trees	35
Sum of	Shrubs	-
of native	Grasses etc.	10.
plants by	Forbs	0.3
form group	Ferns	-
	Other	-
High Threat	Weed cover	90

M

Stems with Hollows
1 ①
0.
n/a

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)			Bare ground cover (%)				Cryptogam cover (%)				Rock cover (%)						
Subplot score (% in each)	12	1	1	1	0	2	0	1	0	0	0	0	0	0	0	0	0	00
Average of the 5 subplots	1.	2				2	E	-	-		-	0	-	10	P	0	0	00

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Element	Pattern	Microrelief
Soil Surface Texture	Soil Colour	Soil Depth
Aspect	Site Drainage	Distance to nearest
	Element Soil Surface Texture Aspect	Landform Landform Element Pattern Soil Surface Soil Texture Colour Aspect Site Drainage

Plot Disturbance	Severity code	Age	Observational evidence:
Clearing (inc. logging)			RESIVE ARGUE TO A SPACE
Cultivation (inc. pasture)			Parkie Paddown no mich storey minnellar
Soil erosion			1 stor france
Firewood / CWD removal		-	
Grazing (identify native/stock)			COLLIP OVORING
Fire damage			CHIE DI
Storm damage			
Weediness			dese , sent an impo
Other			extreme disturbance.

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

400 2	alot: Sheet of	Survey Name	Plot Identifier		Re	corders		
Date	7 % 1%	Blhill indist	22 (331)	phot	ele	Smil	n.	
GF	Top 3 native species in	n each growth form group: Fu	Il species name mandatory ne where practicable	N, E or HTE	Cover	Abund	stratum	voucher
Code	All other hative and ca	S and Var	9	32	15	1		
-1	Everyn	s mar stata		2	20	1		
7	Cargonose S	Residen-S.		HTE	60.			
	ATO US	ous dicar	-5	E	1	40.	-	
	Spario	mdagese	nesss	HTE	5.			
	danta	6 preside	۹.	E	45			
	hand	hers po	licote,	E	L	100		-
	6300		otly astudie	E	5.		-	-
		1000-2 b	simouning awers	SE	2	50		
	sida r	rowaldig.)	E	0.5	30.		
F	Platia	pupidescer	2-	N	0.2	200		-
F	OXELIS	perements		M	0.1	200		-
	Haiste	E. alsium V.	Igae	E	0.1	10.	-	-
	ienan	is cladest	rs.	FLE	20			-
	6000	on daction	n.	E	0	10	-	
6	inces	s usitots.		N	0.2	Ю.		-
	11			-		-	-	-
				-	-	-	-	
				-	-	-		-
				-	-	-	-	-
	A				-	-	-	-
	1				-	-	-	-
					-	-	-	-
				-	-	-	-	-
				-	-	-	-	
	5			-	-	-	-	
				-	-		-	-
				-	-	-		
				-	-			
				-				
-								
-								
-	10			-				
-								1
-								
-						-		
-	-				-			

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF – circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...
-This document has not been endorsed or approved by Office of Environment and Heritage or Muddy Boots Environmental Training-

BAM Site -	Field Survey F	Site Sheet n	0: 3						
1. million - 1. million		Survey Name	Zone ID	Recorders					
Date	20 07 18	B/H.II Indest	V7-6	AC	IPS				
	Datum GDA94	Plot ID	BO (304)	Plot dimensions	5,00	Photo # 100-13			
Easting 369584	Northing	IBRA region	Syd bash	Midline bearing from 0 m	2400				
Vegetation Class						Confidence:			
Plant Communit	ty Туре	1592		EEC: 2	Confidence:				

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

BAM (400	Attribute m ² plot)	Sum values
	Trees	8
	Shrubs	12
Count of	Grasses etc.	10
Richness	Forbs	4
	Ferns	2
	Other	5
	Trees	42.6
Sum of	Shrubs	63.5
of native	Grasses etc.	80.5
plants by	Forbs	5.7
form group	Ferns	6
	Other	1.0
High Threat	Weed cover	16.6

	BAN	Attribute (1000 m	² plot)	
DBH	# Tree :	Stems Count	# Stome wit	h Hollows
80 + cm	1	(10	
50 – 79 cm	X	$\overline{(1)}$	0	
30 – 49 cm	111	3		
20 – 29 cm	UHT 1			
10 – 19 cm	HTHT	HT HIT HT	אה אתו אתו א	את את ווולב
5 – 9 cm	Att Att	HTHTHIN	HT HIT HIT HIT	11(47)
< 5 cm	HTHT	HH HT HTH	HIT HIT NA	111159
Length of logs (≥10 cm diameter >50 cm in length)	s (m)	M.	- in the second second	

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)		
Subplot score (% in each)	3040307070	00000	000000	00000		
Average of the 5 subplots	48	0	0	0		

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological Type		Landform Element	Landform	Microrelief
Lithology		Soil Surface Texture	Soil Colour	Soil Depth
Slope	Aspect		Site Drainage	Distance to nearest water and type
Plot Disturbance	Severity code	Age code	Observational evidence:	
Clearing (inc. logging)		1.000	C+	
Cultivation (inc. pasture)				
Soil erosion				
Firewood / CWD removal				
Grazing (identify native/stock)				
Fire damage				
Storm damage				
Weediness		-		
Other				

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

-This document has not been endorsed or approved by Office of Environment and Heritage or Muddy Boots Environmental Training-

400 m ² p	lot: Sheet 2 of 3 Survey Name Plot Identifier	Recorders						
Date	2007 18 BO							
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher		
1	Ancophore costata	7	10	20 -				
4	Englishin Sheet	N	5	1				
T	Con ha mailets	2	1	2				
T	Estables abboider	N	15					
5	Accous elangeter	N	10		1-01			
a	Ordense Line etc.	N	20					
5	A company and the	Ч	0.5	50.				
	Examples andela.	N	10.					
S	acacia unicitaria.	M	1	2				
5	Deversig whichfolig.	N	1	4				
-	Chlow to 27 Finer	HTE	VO.					
1	There are friendles	N	40		2			
G	Entelasia stricter.	N	S					
~	Catoliana Stricta	E	0.5	20				
F	di-1 the sicher	N	5					
0	Bllowloge Scender	N	05	30				
E	Anche in similar	Y	1	00				
T	Plast to Parting add	N	6.5	10.				
	Discharge large deg.	F		100				
	appropriation villability	HITE	5		-			
5	ledesper on polyour over	N	30					
F	Disnella Certer var. ande	AN	5.					
6-	lon-adve longitalis	N	1	300				
E	and a productions.	N	0.5	.300	1			
	hidea alosa.	HITE	0.5	50				
F	adiantim achiepicn	N	1	200	•	-		
E	BOMMAR ENGACIS	N	1.O	10.				
<	Biemia oblorgiteria	N	02	15.				
0	ancie cholestic	2	0.2	20				
C	inderte critidina	2	30					
5	Revenaria Timporis	2	0.2	10.				
-	briana randa	HTTE	0.5	>20				
6	endeds morainels.	N	O.F	500)			
E	a vhilidosperan coulidan.	N	0.2	200)			
G	emin simile.	N	0.1	20).			
S	Barsia spirosa	N	07	1		a bires		
S	Cassia neare	N	0.1	10.	-			
-	hoohan's collicator	E	0.5	, 50				
0	harder persie violaroo	N	0.1	2				
	Codade Canada	LITE	61		1	-		

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic GF - circle code if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ... -This document has not been endorsed or approved by Office of Environment and Heritage or Muddy Boots Environmental Training-

400 m ²	plot: Sheet 3 of 3 Survey Name Plot Identifier		Re	ecorders		-
Date	20 07 18 6/hill indest. BO (304)	F	+CIP	5		
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher
0	hobertic scades	N	0.1			
	Pospelum dicktohm.	HTE	0.5	30		
S	policics semacility.	N	0.2	2		
1	rotelaes longitalia.	N	0.1	I		
T	Allocoscoriza litterais.	N	1	2		
E	lepidosperna pleate	N	0.1	1		
S	acacia longitol19.	N	30.1	1		
G	digitaria parvillara	N	0.1	(-
0	eistrephs lotilolis.	7	0.1	10	+	
F	Oxelis peremes	N	01	10.		
					-	
-	2	-				
	1					
-				-		
-						
-		-				
-						
		-				
		_				
					-	
		_				
-				_		
-						
					_	-
-					-	
	21					
	70					
				-	-	
	34					
	35	-				
	Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-				
	2					
		-			-	
						-
	41	-				-

GF Code: see Growth Form definitions in Appendix 1N: native, E: exotic, HTE: high threat exoticGF - circle code if 'top 3'.Cover:0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63×63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4×1.4 m, and $1\% = 2.0 \times 2.0$ m, $5\% = 4 \times 5$ m, $25\% = 10 \times 10$ mAbundance:1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000,

Appendix E BAM Calculator Credit Report

Proposal Name	BAM data last updated *
17032_ Black Hill Industrial Estate_revision	10/06/2021
Report Created	BAM Data version *
09/07/2021	45
BAM Case Status	Date Finalised
Finalised	09/07/2021
Assessment Type	BOS entry trigger
Part 4 Developments (General)	BOS Threshold: Area clearing threshold
	Proposal Name 17032_ Black Hill Industrial Estate_revision Report Created 09/07/2021 BAM Case Status Finalised Assessment Type Part 4 Developments (General)

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Ecosystem credits for plant communities types (PCT), ecological communities & threatened species habitat

Zone	Vegetation	TEC name	Current	Change in	Area	BC Act Listing	EPBC Act	Species sensitivity	Biodiversity	Potential	Ecosystem
	zone name		Vegetation	Vegetation	(ha)	status	listing status	to gain class	risk	SAII	credits
			integrity score	integrity				(for BRW)	weighting		
				(loss / gain)							

Assessment Id

BAM Credit Summary Report

Spotted Gum - Rec	d Ironbark - Grey G	um shrub - gra	ass open for	est of	the Lower Hunte	r		
1 1592_High	Lower Hunter Spotted Gum Ironbark Forest in the Sydney Basin and NSW North Coast Bioregions	67.3	67.3	22.1	Endangered Ecological Community	High Sensitivity to Potential Gain	2.00	745
2 1592_Mod erate	Lower Hunter Spotted Gum Ironbark Forest in the Sydney Basin and NSW North Coast Bioregions	49.7	49.7	29.1	Endangered Ecological Community	High Sensitivity to Potential Gain	2.00	722
3 1592_Low- Grassland	Lower Hunter Spotted Gum Ironbark Forest in the Sydney Basin and NSW North Coast Bioregions	14.9	14.9	2.6	Endangered Ecological Community	High Sensitivity to Potential Gain	2.00	0
4 1592_Low	Lower Hunter Spotted Gum Ironbark Forest in the Sydney Basin and NSW North Coast Bioregions	45.4	45.4	17.5	Endangered Ecological Community	High Sensitivity to Potential Gain	2.00	398

BAM Credit Summary Report

5	1592_Low_ ST	Lower Hunter Spotted Gum Ironbark Forest in the Sydney Basin and NSW North Coast Bioregions	12.7	12.7	1.5	Endangered Ecological Community		High Sensitivity to Potential Gain	2.00		0
										Subtotal	1865
White	Mahogany -	Spotted Gum - Gr	rey Myrtle semi-	mesic shru	bby o	pen forest of the	central and lov	ver Hunter Valley			
6	1584_High	Not a TEC	82.4	82.4	0.78			High Sensitivity to Potential Gain	1.50		24
										Subtotal	24
										Total	1889

Species credits for threatened species

Vegetation zone	Habitat condition	Change in	Area (ha)/Count	BC Act Listing	EPBC Act listing	Biodiversity risk	Potential	Species
name	(Vegetation Integrity)	habitat condition	(no. individuals)	status	status	weighting	SAII	credits

Appendix F EPBC Likelihood of Occurrence Table

EPBC Likelihood of Occurrence

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
Birds	_			
Anthochaera phrygia	Regent Honeyeater	Critically Endangered	The species inhabits dry open forest and woodland, particularly Box-Ironbark woodland, and riparian forests of River She-Oak. Regent Honeyeaters inhabit woodlands that support a significantly high abundance and species richness of bird. These woodlands have significantly large numbers of mature trees, high canopy cover and abundance of mistletoes. Every few years non-breeding flocks are seen foraging in flowering coastal Swamp Mahogany and Spotted Gum forests, particularly on the central coast and occasionally on the upper north coast. The Regent Honeyeater is a generalist forager, although it feeds mainly on the nectar from a relatively small number of eucalypts that produce high volumes of nectar. Key eucalypt species include Mugga Ironbark, Yellow Box, White Box and Swamp Mahogany. Other tree species may be regionally important. For example the Lower Hunter Spotted Gum forests have recently been demonstrated to support regular breeding events. Flowering of associated species such as Thin-leaved Stringybark <i>Eucalyptus eugenioides</i> and other Stringybark species, and Broad-leaved Ironbark <i>E. fibrosa</i> can also contribute important nectar flows at times.	Unlikely
Botaurus poiciloptilus	Australasian Bittern	Endangered	Inhabits dense tall sedge vegetation and permanent wetlands. The site comprises dry sclerophyll forest with no permanent wetlands. No suitable habitat occurs within the study area.	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
Calidris canutus	Red Knot	Endangered Migratory	Inhabits intertidal mudflats, estuaries, bays, inlets, lagoons, harbours and sandflats and sandy beaches of sheltered coasts. No suitable habitat occurs within the study area.	Unlikely
Calidris ferruginea	Curlew Sandpiper	Critically Endangered & Migratory	Inhabits intertidal mud flats in estuaries, bays, lakes and lagoons or areas of bare mud or sand on which to forage. No suitable habitat occurs within the study area.	Unlikely
Calidris tenuirostris	Great Knot	Critically Endangered Migratory	Inhabits sheltered, coastal habitats containing large, intertidal mudflats or sandflats, including inlets, bays, harbours, estuaries and lagoons. Often recorded on sandy beaches with mudflats nearby, sandy spits and islets and sometimes on exposed reefs or rock platforms.	Unlikely
Charadrius Ieschenaultii	Greater Sand Plover	Vulnerable Migratory	Inhabits coastal areas in NSW, occurring mainly on sheltered sandy, shelly or muddy beaches or estuaries with large intertidal mudflats or sandbanks. No suitable habitat occurs within the study area	Unlikely
Charadrius mongolus	Lesser Sand Plover	Endangered Migratory	Inhabits coastal areas in NSW, favouring the beaches of sheltered bays, harbours and estuaries with large intertidal sandflats or mudflats; occasionally occurs on sandy beaches, coral reefs and rock platforms. No suitable habitat occurs within the study area	Unlikely
Dasyornis brachypterus	Eastern Bristlebird	Endangered	Inhabits dense, low vegetation including heath and open woodland with a heathy understorey. Potential habitat is in a modified or degraded state due to cattle grazing and a managed understorey. The site has been used as a commercial poultry farm and since the decommissioning the site has been routinely grazed, maintaining a	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
			managed understorey of the native vegetation. This land management practice has reduced the likelihood of this species occurring in the study area.	
Erythrotriorchis radiatus	Red Goshawk	Vulnerable	Inhabit open woodland and forest, preferring a mosaic of vegetation types, a large population of birds as a source of food, and permanent water, and are often found in riparian habitats along or near watercourses or wetlands. In NSW, preferred habitats include mixed subtropical rainforest, <i>Melaleuca</i> swamp forest and riparian <i>Eucalyptus</i> forest of coastal rivers. No suitable habitat occurs within the study area.	Unlikely
Grantiella picta	Painted Honeyeater	Vulnerable	Inhabits Boree/ Weeping Myall (<i>Acacia pendula</i>), Brigalow (<i>A. harpophylla</i>) and Box-Gum Woodlands and Box-Ironbark Forests. No suitable habitat occurs within the study area.	Unlikely
Lathamus discolor	Swift Parrot	Critically Endangered	This species migrates to the Australian south-east mainland between March and October. On the mainland they occur in areas where eucalypts are flowering profusely or where there is abundant lerp (from sap-sucking bugs) infestations. Favoured feed trees include winter flowering species such as Swamp Mahogany <i>Eucalyptus robusta</i> , Spotted Gum <i>Corymbia maculata</i> , Red Bloodwood <i>C. gummifera</i> , Mugga Ironbark <i>E. sideroxylon</i> , and White Box <i>E. albens</i> . Commonly used lerp infested trees include Inland Grey Box <i>E. microcarpa</i> , Grey Box <i>E. moluccana</i> and Blackbutt <i>E. pilularis</i> . The study area comprises suitable foraging habitat, and this species may seasonally use resources within the study area opportunistically or during migration. However, surveys undertaken by RPS (2017) on site, in accordance with EPBC Act guidelines, found no Swift Parrots on site. Additionally, the species is unlikely to be dependent on habitat within the study area (i.e. for breeding or important life cycle periods), or habitat is in a modified or degraded state.	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
Limosa lapponica baueri	Bar-tailed Godwit	Vulnerable	Inhabits coastal environments such as large intertidal sandflats, banks, mudflats, estuaries, inlets, harbours, coastal lagoons and bays. No suitable habitat occurs within the study area.	Unlikely
Limosa lapponica menzbieri	Northern Siberian Bar-tailed Godwit	Critically Endangered	Inhabits coastal environments such as large intertidal sandflats, banks, mudflats, estuaries, inlets, harbours, coastal lagoons and bays. No suitable habitat occurs within the study area.	Unlikely
Numenius madagascariensis	Eastern Curlew	Critically Endangered & Migratory	Inhabits intertidal mud flats in estuaries, bays, lakes and lagoons. No suitable habitat occurs within the study area.	Unlikely
Rostratula australis	Australian Painted Snipe	Endangered	Inhabits floodplain wetlands of major coastal rivers, minor flood plain, coastal sandplain wetlands and estuaries. No suitable habitat occurs within the study area.	Unlikely
Frogs				
Heleioporus australiacus	Giant burrowing Frog	Vulnerable	Inhabits open dry sclerophyll forest, woodlands, and heaths, breeding in soaks or pools within first or second order streams. Open dry sclerophyll forests on site have high levels of disturbance from pastoral land management practices and as such do not constitute suitable habitat or this species.	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
Litoria aurea	Green and Golden Bell Frog	Vulnerable	Inhabits marshes, dams and stream-sides, particularly those containing bullrushes (<i>Typha</i> spp.) or spikerushes (<i>Eleocharis</i> spp.). Optimum habitat includes water- bodies that are unshaded, free of predatory fish such as Plague Minnow (<i>Gambusia holbrooki</i>), have a grassy area nearby and diurnal sheltering sites available. Some sites, particularly in the Greater Sydney region occur in highly disturbed areas. The permanent water bodies present are infested with water hyacinth containing no suitable vegetation in the form of bullrushes and spikerushes.	Unlikely
Litoria littlejohni	Littlejohn's Tree Frog	Vulnerable	Inhabits wet and dry sclerophyll forests and heathlands, breeding in a wide range of water bodies including semi-permanent dams, permanent ponds, ephemeral pools, and permanent streams. The drainage lines present do not contain permanent water. Open dry sclerophyll forests on site have high levels of disturbance from pastoral land management practices and as such do not constitute suitable habitat or this species.	Unlikely
Mixophyes balbus	Stuttering Frog	Vulnerable	Inhabits sclerophyll forests and rainforests of upland areas, breeding in forest streams with permanent water. The drainage lines present do not contain permanent water. No suitable habitat occurs within the study area.	Unlikely
Mixophyes iteratus	Giant Barred Frog	Endangered	Inhabits moist riparian habitats in rainforests or wet sclerophyll forest, generally lower elevation permanent or semi-permanent streams where they breed. The study area comprises vegetation in the form of dry sclerophyll forest which does not align with this species associated habitat.	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
			No suitable habitat occurs within the study area.	
Reptiles				
Hoplocephalus bungaroides	Broad-headed Snake	Vulnerable	Inhabits sandstone land forms, typically among exposed sandstone outcrops in a variety of vegetation types. The study area is located within the Beresfield soil landscape in which topsoils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned No suitable habitat occurs within the study area.	Unlikely
Mammals				
Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Found mainly in areas with extensive cliffs and caves. Roosts in caves (near their entrances), crevices in cliffs, old mine workings and in the disused, bottle-shaped mud nests of the Fairy Martin (<i>Petrochelidon ariel</i>), frequenting low to mid-elevation dry open forest and woodland close to these features. Females have been recorded raising young in maternity roosts (c. 20-40 females) from November through to January in roof domes in sandstone caves and overhangs. They remain loyal to the same cave over many years. Found in well-timbered areas containing gullies. No caves are present on site thus no suitable habitat occurs within the study area.	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
Dasyurus maculatus maculatus (SE mainland population)	Spotted-tail Quoll	Endangered	Inhabits a wide range of habitat types, including woodlands, rainforest, coastal heath and inland riparian forest. This species uses fallen logs and hollow bearing trees. Predates primarily on terrestrial fauna, however is an excellent climber and will hunt possums and gliders in tree hollows and prey on roosting birds. Potential habitat is present within the study area, however this is in a degraded state due to cattle grazing and a managed understorey. The site has been used as a commercial poultry farm and since the decommissioning the site has been routinely grazed, maintaining a managed understorey of the native vegetation. This land management practice has reduced the likelihood of this species occurring in the study area due to a reduction in prey and denning sites.	Unlikely
Petauroides volans	Greater Glider	Vulnerable	Inhabits and is restricted to eucalypt forests and woodlands. This species favours forests with a diversity of eucalypt species, due to seasonal variation in its preferred tree species. It is typically found in highest abundance in taller, montane, moist eucalypt forests with relatively old trees and abundant hollows. No continuous stretch of vegetated forest and woodlands are present within the study area. Additionally, the study area is located outside of this species geographic distribution.	Unlikely
Petrogale penicillata	Brush-tailed Rock- wallaby	Vulnerable	This species occupies rocky escarpments, outcrops and cliffs with a preference for complex structures with fissures, caves and ledges, often facing north. Generally, browse on vegetation in and adjacent to rocky areas eating grasses and forbs as well as the foliage and fruits of shrubs and trees. Shelter or bask during the day in rock crevices, caves and overhangs and are most active at night. The site comprises no suitable habitat in the form of rocky landscape characteristics and no records exist as defined on the OEH Bionet using a 10km search radius of the locality.	Unlikely
Phascolarctos cinereus	Koala	Vulnerable	Inhabit eucalypt woodlands and forests in a fragmented distribution throughout eastern Australia. In NSW this species mainly occurs on the central and north coasts	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
			with some populations in the west of the Great Dividing Range but have been recorded in the southern tablelands. This species feeds on the foliage of more than 70 eucalypt species and 30 non-eucalypt species, but in any one area will select preferred browse species. Spend most of their time in trees but will descend and traverse open ground to move between trees. Home range size varies with quality of habitat, ranging from less than two ha to several hundred hectares in size.	
			This species may be an occasional visitor to the study area, but habitat similar to the study area is widely distributed in the local area, indicating the species is not dependent on the available habitat within the impacted area for breeding or important life cycle periods. Past field surveys did record the presence of low numbers of <i>Eucalyptus tereticornis</i> (Koala Feed Tree). At no point was this species observed at >15% cover triggering the need for a SEPP 44 assessment. RPS (2017) recorded no Koalas in their targeted surveys.	
			Inhabits coastal heaths and dry and wet sclerophyll forests. Dense understorey with occasional open areas is an essential part of habitat, and may consist of grass-trees, sedges, ferns or heath, or of low shrubs of tea-trees or melaleucas. A sandy loam soil is also a common feature.	
Potorous tridactylus tridactylus	Long-nosed Potoroo (SE mainland)	Vulnerable	The study area is located within the Beresheld soil landscape in which topsoils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. Potential habitat is in a modified or degraded state due to cattle grazing and a managed understorey. The site has been used as a commercial poultry farm and since the decommissioning the site has been routinely grazed, maintaining a managed understorey of the native vegetation. This land management practice has reduced the likelihood of this species occurring in the study area	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
Pseudomys novaehollandiae	New Holland Mouse	Vulnerable	Inhabits heathlands, woodlands with dense undergrowth, vegetated sand dunes, generally in areas with soils suitable for digging. The study area is located within the Beresfield soil landscape in which topsoils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. Potential habitat is in a modified or degraded state due to cattle grazing and a managed understorey. The site has been used as a commercial poultry farm and since the decommissioning the site has been routinely grazed, maintaining a managed understorey of the native vegetation. This land management practice has reduced the likelihood of this species occurring in the study area	Unlikely
Pteropus poliocephalus	Grey-headed Flying Fox	Vulnerable	Occurs in subtropical and temperate rainforests, tall sclerophyll forests and woodlands, heaths and swamps as well as urban gardens and cultivated fruit crops. Roosting camps are generally located within 20 km of a regular food source and are commonly found in gullies, close to water, in vegetation with a dense canopy. Feed on the nectar and pollen of native trees, in particular Eucalyptus, Melaleuca and Banksia, and fruits of rainforest trees and vines. The site comprises dry sclerophyll forest which does not align with the associated vegetation for this species. Furthermore, no known roosting colonies are present on site.	Unlikely
Plants	1	1		1

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
Acacia bynoeana	Bynoe's Wattle	Vulnerable	This species occurs in heath or dry sclerophyll forest on sandy soils. Prefers open, sometimes disturbed sites such as trail margins, edges of roadside spoil mounds and in recently burnt patches. Associated overstorey species include <i>Corymbia gummifera, Eucalyptus haemastoma, Eucalyptus parramattensis, Banksia serrata</i> and <i>Angophora bakeri</i> . The vegetation within the subject site is a dry sclerophyll forest formation, in which only one of the listed over-storey species associated with the threatened species occurs (<i>Corymbia gummifera</i>) The site is located within the Beresfield soil landscape in which topsoils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. This species has not been recorded within the locality as defined on the OEH Bionet using a 10km search radius of the locality. In addition, the site has been routinely grazed, maintain a managed understorey of the native vegetation. This land management practice has limited the likelihood of this species being detected within the subject site.	Unlikely
Angophora inopina	Charmhaven Apple	Vulnerable	 This species occurs most frequently in four main vegetation communities: (i) <i>Eucalyptus haemastoma–Corymbia gummifera–Angophora inopina</i> woodland/forest; (ii) <i>Hakea teretifolia–Banksia oblongifolia</i> wet heath; (iii) <i>Eucalyptus resinifera–</i> <i>Melaleuca sieberi–Angophora inopina</i> sedge woodland; (iv) <i>Eucalyptus capitellata–</i> <i>Corymbia gummifera–Angophora inopina</i> woodland/forest. The site comprises only one of the associated canopy species, indicating a reduction in the likelihood of this species occurrence in the study area. Additionally, this species has not been recorded within the locality as defined on the OEH Bionet using a 10km search radius of the locality. 	Unlikely
Asterolasia elegans		Endangered	 This species is known from only seven populations. Occurs on Hawkesbury sandstone in sheltered forests on mid- to lower slopes and valleys, e.g. in or adjacent to gullies which support sheltered forest. The study area is located within the Beresfield soil landscape in which topsoils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. The site is also located outside of its known geographic distribution. 	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
Caladenia tessellata	Thick-lipped Spider-orchid	Vulnerable	This species is generally found in grassy sclerophyll woodland on clay loam or sandy soils. Potential habitat is present in the study area. However, this species is unlikely to be dependent on habitat within the study area. Potential habitat is in a modified or degraded state due to cattle grazing and a managed understorey. RPS (2017) undertook targeted surveys for this species during its optimal flowering time (Sept-Oct) and was not recorded.	Unlikely
Commersonia prostrata	Dwarf Kerrawang	Endangered	This species inhabits sandy, sometimes peaty soils in a wide variety of habitats: Snow Gum (<i>Eucalyptus pauciflora</i>) Woodland and Ephemeral Wetland floor at Rowes Lagoon; Blue leaved Stringybark (<i>E. agglomerata</i>) Open Forest at Tallong; and in Brittle Gum (<i>E. mannifera</i>) Low Open Woodland at Penrose; Scribbly Gum (<i>E. haemostoma</i>)/ Swamp Mahogany (<i>E. robusta</i>) Ecotonal Forest at Tomago. The vegetation within the study area is in the form of dry sclerophyll forest dominated by <i>C. maculata</i> and Ironbarks which does not align with this species known associated vegetation. In addition, the site has been used as a commercial poultry farm and since the decommissioning the site has been routinely grazed, maintain a managed understorey of the native vegetation. This land management practice has limited the likelihood of this species being detected within the subject site.	Unlikely
Cryptostylis hunteriana	Leafless Tongue- orchid	Vulnerable	This species is known to be extremely cryptic as it does not flower each year. Known to occur within a wide range of habitats including woodlands to swamp heaths. Within the Hunter region larger populations have been typically found in woodland dominated by <i>Eucalyptus racemosa</i> (Scribbly Gum) and it prefers areas with an open grassy understorey. The species typically prefers moist sandy soils in sparse to dense heath and sedge land, or moist to dry clay loams in coastal forests. This species is known to occur in association with <i>C. subulata</i> and <i>C. erecta</i> . The vegetation within the subject site is a dry sclerophyll forest formation, which is one of the many variable vegetation this species is associated. The site is located within the Beresfield soil landscape in which topsoils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. This species has not been recorded within the locality as defined on the OEH	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
			Bionet using a 10km search radius of the locality. In addition, the site has been used as a commercial poultry farm and since the decommissioning the site has been routinely grazed, maintaining a managed understorey of the native vegetation. This land management practice has limited the likelihood of this species being detected within the subject site.	
Cynanchum elegans	White-flowered Wax Plant	Endangered	The White-flowered Wax Plant usually occurs on the edge of dry rainforest vegetation and other associated vegetation types such as littoral rainforest; coastal scrub and open forest and woodland. Species associated include; Coastal Tea-tree <i>Leptospermum laevigatum</i> – Coastal Banksia <i>Banksia integrifolia</i> subsp. <i>integrifolia</i> coastal scrub; Forest Red Gum <i>Eucalyptus tereticornis</i> aligned open forest and woodland; Spotted Gum <i>Corymbia maculata</i> aligned open forest and woodland; and Bracelet Honey myrtle <i>Melaleuca armillaris</i> scrub to open scrub. The study area vegetation does provide marginal habitat in the form of Spotted Gum aligned open forest and woodland. The current grazing pressures and historic disturbance associated with the subject site indicate that it is likely to reduce the occurrence of this species within the study area, though cannot be ruled out on this attribute alone. On this basis further survey is required.	Likely
Eucalyptus glaucina	Slaty Red Gum	Vulnerable	This species grows in grassy woodland and dry eucalypt forest on deep, moderately fertile and well-watered soils. This species is found only on the north coast of NSW and in separate districts: near Casino where it can be locally common, and farther south, from Taree to Broke, and west of Maitland (DoEE 2008). The site is located within the Beresfield soil landscape in which topsoils are mapped to be predominantly a black loam, which is consistent with the moderately fertile and well-watered soils this species is generally aligned. As such similar vegetation occurs on site in the formation of a dry sclerophyll forest. On this basis further survey is required.	Likely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
Eucalyptus parramattensis subsp. decadens	Earp's Gum	Vulnerable	This species generally occupies deep, low-nutrient sands, often those subject to periodic inundation or where water tables are relatively high. It occurs in dry sclerophyll woodland with dry heath understorey. It also occurs as an emergent in dry or wet heathland. Often where this species occurs, it is a community dominant. Only two separate meta-populations are recorded, one of which is in the Kurri Kurri area. The site is located within the Beresfield soil landscape in which topsoils are mapped to be predominantly a black loam, which is inconsistent with the sandy soils this species is generally aligned. Furthermore, this species has not been recorded within the locality as defined on the OEH Bionet using a 10km search radius of the locality	Unlikely
Euphrasia arguta		Critically Endangered	This species has been recorded in eucalypt forests with a mixed grass and shrub understorey. Dense populations are known to occur in an open disturbed area and along the roadside, indicating the species had regenerated following disturbance. The study area is located outside of its known geographic distribution.	Unlikely
Grevillea parviflora subsp. parviflora	Small-flower Grevillea	Vulnerable	This species is sporadically distributed throughout the Sydney Basin with sizeable populations in the Hunter in the Cessnock - Kurri Kurri area (particularly Werakata NP). Separate populations are also known from Putty to Wyong and Lake Macquarie on the Central Coast. This species grows in sandy or light clay soils usually over thin shales, often with lateritic ironstone gravels and nodules. Occurs in a range of vegetation types from heath and shrubby woodland to open forest, the Hunter in Kurri Sand Swamp Woodland and is also known to occur in <i>C. maculata- A. costata</i> open forest. Associated species in the Kurri Sand Swamp Woodland include <i>Eucalyptus parramattensis</i> subsp. <i>decadens</i> , <i>Angophora bakeri</i> and <i>E. fibrosa</i> with <i>Acacia elongata</i> , <i>Dillwynia parvifolia</i> , <i>Melaleuca thymifolia</i> , <i>Grevillea montana</i> , <i>Eragrostis brownii</i> and <i>Aristida vagans</i> . Found over a range of altitudes from flat, low-lying areas to upper slopes and ridge crests. Hunter occurrences are usually 30-70m ASL, while	Likely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
			 the southern Sydney occurrences are typically at 100-300m ASL. Often occurs in open, slightly disturbed sites such as along tracks. Similar vegetation occurs on site in the formation of dry sclerophyll forest and in particular in the northern edge of the study area where it transitions into <i>C. maculata – A. costata</i> open forest. One record exists as defined on the OEH Bionet using a 10km search radius of the locality. On this basis further survey is required. 	
Melaleuca biconvexa	Biconvex Paperbark	Vulnerable	This species generally grows in damp places, often near streams or low-lying areas on alluvial soils of low slopes or sheltered aspects. This species is only found in NSW, with scattered and dispersed populations found in the Jervis Bay area in the south and the Gosford-Wyong area in the north. The vegetation within the subject site is predominantly a dry sclerophyll forest formation of which is not associated with this species. The watercourse is severely disturbed with large thickets of <i>Lantana camara</i> due to erosion from cattle grazing and past land disturbance. No records exist as defined on the OEH Bionet using a 10km search radius of the locality.	Unlikely
Pelargonium sp. Stristellum	Omeo Stork's-bill	Endangered	This species has a narrow habitat that is usually just above the high-water level of irregularly inundated or ephemeral lakes, in the transition zone between surrounding grasslands or pasture and the wetland or aquatic communities. No suitable habitat occurs within the study area.	Unlikely
Phaius australis	Lesser Swamp- orchid	Endangered	Inhabits swampy grassland or swampy forest including rainforest, eucalypt or paperbark forest, mostly in coastal areas. The study area is located outside of its known geographic distribution. No suitable habitat occurs within the study area.	Unlikely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
Prasophyllum sp. Wybong	A leek orchid	Critically Endangered	Known to occur in open eucalypt woodland and grassland. The study area is located outside of its known geographic distribution.	Unlikely
Pterostylis gibbosa	Illawarra Greenhood	Endangered	All known populations grow in open forest or woodland, on flat or gently sloping land with poor drainage. In the Hunter region, the species grows in open woodland dominated by Narrow-leaved Ironbark <i>E. crebra</i> , Forest Red Gum and Black Cypress Pine <i>Callitris endlicheri</i> . No suitable habitat occurs within the study area.	Unlikely
Rhizanthella slateri	Eastern Underground Orchid	Endangered	Habitat requirements are poorly understood, and no particular vegetation type has been associated with the species, although it is known to occur in sclerophyll forest. Highly cryptic given that it grows almost completely below the soil surface, with flowers being the only part of the plant that can occur above ground. Limited potential habitat occurs within the study area and habitat is mainly in a modified or degraded state due to cattle grazing and a managed understorey.	Unlikely
Rutidosis heterogama	Heath Wrinklewort	Vulnerable	This species grows in heath on sandy soils and moist areas in open forest and has been recorded along disturbed roadsides. This species has been recorded from near Cessnock to Kurri Kurri with an outlying occurrence at Howes Valley. Potential habitat is present in the study area; however, the site is in a highly disturbed state due to current cattle grazing and historic understorey management. Although the current grazing pressures and historic disturbance associated with the subject site indicates that it is likely to reduce the occurrence of this species within the study area due to a major loss in shrubby understorey, similar vegetation occurs on site and it is located within its known geographic distribution. This species has been	Likely

Scientific Name	Common Name	Status	Habitat requirement	Habitat present on development site
			recorded within the locality as defined on the OEH Bionet using a 10km search radius of the locality. On this basis further survey is required.	
Syzygium paniculatum	Magenta Lilly Pilly	Vulnerable	Occurs on gravels, sands, silts and clays in riverside gallery rainforests and remnant littoral rainforest communities. No suitable habitat occurs within the study area	Unlikely
			Locally this species is usually found in low open forest/woodland with an undisturbed mixed shrubby understorey and grassy groundcover often in association with the Awaba Soil Landscape. It generally prefers well-drained sites below 200m elevation and annual rainfall between 1000 - 1200mm. The preferred substrates are sandy skeletal soil on sandstone, sandy-loam soils, low nutrients; and clayey soil from conglomerates, pH neutral.	
Tetratheca juncea	Black-eyed Susan	Vulnerable	Current grazing pressures and historic disturbance on site has resulted in a highly modified landscape causing a major loss in shrubby understorey which has reduced the likelihood of occurrence of this species on site. RPS (2017) undertook targeted surveys for this species during its optimal flowering time (Sept-Oct) and was not recorded. However, due to this species inconsistent flowering events, potential habitat present in the north west corner of the study area, and records existing as defined on the OEH Bionet using a 10km search radius of the locality. The need for further survey cannot be ruled out.	Likely
Thesium australe	Austral Toadflax	Vulnerable	Occurs in grassland on coastal headlands or grassland and grassy woodland away from the coast. Often found in association with Kangaroo Grass (<i>Themeda australis</i>). Marginal potential habitat is present in the study area. However, this species is unlikely to be dependent on habitat within the study area, and habitat is in a modified or degraded state due to cattle grazing and a managed understorey.	Unlikely

Appendix G

Personnel Qualifications

Name	Title	Qualifications	Roles
Matt Doherty	Director	 BAM Assessor (#BAAS17044) B. Landscape Management and Conservation (Soil and Water Management) Bush Regeneration Cert IV 	Approval of BDAR. Review and approval of BDAR. Contributor to BDAR and fieldwork including fauna surveys. Overarching guidance of BAM assessment and BDAR development.
Adam Cavallaro	Senior Ecologist	 BAM Assessor (#BAAS18056) B. Environmental Science (Conservation Ecology) Bush Regeneration Cert IV 	Undertake BAM assessment and BDAR. Field work including PCT identification, vegetation mapping, and threatened flora surveys. Contributor to BDAR and preparation of mapping.
Phoebe Smith	Field Ecologist	 B. Environmental Science and Management (Honours) Master Environmental Management & Sustainability 	Field work including threatened flora and fauna surveys, assisting with vegetation assessment. Contributor to BDAR
Bret Stewart	Ecologist	 Bachelor of Science in Evolution and Ecology 	Field work including threatened flora and fauna surveys, assisting with vegetation assessment.
Coral Pearce	Ecologist	 Ms. Of Science – Ecology 	Field work including BAM plot and threatened species habitat assessment Contributor to BDAR

٦

Chris Spraggon Ecologist	 B. Science (Honours) Conservation & Land Management Cert III 	Field work including BAM plot and threatened species habitat assessment
--------------------------	---	--

Appendix H

Detailed Project Description

3 Description of the Development

The proposed development seeks consent for the subdivision of Part Lot 1131 in Deposited Plan 1057179 to create 39 large industrial lots, as shown on the subdivision plan¹⁹, which is included within Appendix C. Additionally, the proposal includes the remediation of the site to ensure that site is suitable for future occupation for industrial use.

This proposal constitutes stage 2 of a concept development application submitted to Cessnock City Council, pursuant to s.22 of the *Environmental Planning and Assessment Act* 1979 (refer to section 6.8.3). This stage of the concept development application includes:

- Creation of two signalised intersections to provide suitable access to the subdivision.
- The realignment of the existing watercourse that traverse the western portion of the site.
- Civil earthworks to provide a suitable foundation for future industrial development,
- Extension, augmentation and/ or adaptation of essential services (*i.e.* water, sewer & telecommunications) to cater for the future tenants of the industrial development,
- Construction of a 132/11kV substation and the relocation of the existing aboveground 132kV high voltage transmission line,
- Remediation of the site to ensure suitable occupation for industrial use,
- Subdivision of Part of Lot 1131 in Deposited Plan 1057179 to create 39- industrial lots and 1 environmental conservation lot; to be delivered in six stages,
- Construction of the ring-road network to provide suitable access to all proposed industrial lots, and
- Infrastructure to capture, detain and treat all stormwater collected on site.

More detail in relation to the components of the proposed development are provided below.

3.1 Access

Access to the site will be obtained off John Renshaw Drive via two signalised intersections; as depicted on the concept plan prepared by ADW Johnson and included within Appendix C. The eastern intersection will provide shared access for the proposed development and the adjoining development to the east of the subject site. Vehicles will be able to enter and leave the site via both intersections east or west bound.

3.2 Channel Realignment

It is proposed that a vegetated channel will be constructed to convey road and lot runoff northwards into an upper tributary of Weakley's Flat Creek. The channel is a realignment of a 1st order stream. The channel shall be trapezoidal in shape, vegetated and generally

¹⁹ ADW Johnson. (2018). Plan of Subdivision. Drawing Reference 239590-PSK-001. Revision D

Page 26

parallel with the western access road as illustrated within the concept engineering plans contained in Appendix C.

3.3 Earthworks

Substantial earthworks are proposed to provide to achieve overall finished site levels as shown in the civil drawings at Appendix C. To achieve the required finished site levels across the site, the proposal requires a significant amount of cut & fill. It is important to note that no cut/ fill will be imported or exported as a result of the development.

3.4 Infrastructure and Services

The proposed development has access to all essential services, as previously discussed in section 2.4. ADW Johnson have prepared a Water and Wastewater Servicing Strategy to ensure that the proposed development is adequately serviced. These strategies, included within Appendix E, are currently with Hunter Water Corporation for review and endorsement.

In addition, an application has been prepared by Power Design & Energy Projects Pty Ltd to Ausgrid to support the construction of a 132/11kV substation in the south eastern corner of the development site.

It is proposed that gas and telecommunication services will be provided to each of the allotments within the proposed subdivision. Consultation with the relevant service authority for the supply of each serviced will be conducted before the issue of the subdivision certificate.

3.5 Site Remediation

The site will be remediated in accordance with the Remedial Action Plan prepared by JBS&G, which is included in Appendix H. The preferred remedial approach for the impacts comprise:

- Excavation and on-site encapsulation of identified Asbestos Containing Material (ACM) impacted Area of Environmental Concern (AEC),
- Excavation and on-site encapsulation of identified ACM, nutrient and bacterial impacted AEC (i.e. areas where all three of these contaminant groups are present),
- On-site treatment (i.e. excavation, drying and aeration) and reuse of nutrient and bacteria only impacted AEC, and
- Excavation and off-site disposal of any waste material in fill and on ground (aesthetic), with recycling of this material to the extent practicable and onsite reuse after recycling subject to geotechnical considerations.

Unexpected finds that may arise following demolition and during remediation or bulk earthworks will also require to be addressed along similar lines.

3.6 Subdivision and Staging

The proposed subdivision will be delivered in accordance with the staging plan prepared by ADW Johnson and included within Appendix C. The industrial subdivision and site remediation works will be conducted in six stages. Details of the proposed subdivision are provided in Table 4 below.

Stage	No of Lots	Area (ha)
1	Six	19.7
2	Eight	30.71
3	Seven	33.15
4	Six	35.25
5	Six	28.83
6	Five	30.48

Table 4: Proposed Subdivision	
-------------------------------	--

The concept proposal allows for flexibility in the staging and timing of development of the catalyst precinct to enable development to respond to changing site conditions, opportunities efficiencies, infrastructure delivery and market demands.

3.7 Stormwater Strategy

The development will be supported by typical civil infrastructure including roads, water and sewer reticulation and other services. Stormwater management infrastructure associated with the development will incorporate a conventional pit-and-pipe drainage network discharging to water courses described in section 2.3.3.

3.8 Waste Management

A Waste Management Plan has been prepared to accompany the development application and has been discussed in section 7.12. The Waste Management Plan has identified the nature and volumes of waste generated as a result of the proposed development, as well as the mitigation measure to be implemented to ensure no adverse harm to human health or environment.

3.9 Analysis of the Alternatives

Due to the extent of contamination present through the site, as part of the preparation of the Remedial Action Plan, a number of remediation options were considered. Each remediation option has considered the treatment of:

- ACM in stockpiles/ surface spoils/ fill,
- Biological & Associated Malodourous Soils, and
- Waste material in fill on ground.

Each options is discussed in further detail below.

3.9.1 Option 1

Onsite treatment of the soil so that the contaminants are either destroyed or the associated hazards are reduced to an acceptable level.

3.9.1.1 ACM in stockpiles/ surface spoils/ fill

Handpicking of ACM within a soil matrix (such as stockpiles/ surface soils/ fill) is labour intensive and can be costly and time consuming. It involves laying the material in remedial 'pads' and repeated raking and hand picking until all ACM is removed. The success of the remediation method is highly dependent upon the soil and the amount of other building rubble present within the fill. The more 'clayey' the soil, or the more building rubble present, the harder it is to achieve validation. Given the relatively minor amount of ACM material identified that requires remediation and the potential difficulties in achieving validation of handpicked soils, this is not the preferred option.

3.9.1.2 Biological & Associated Malodourous Soils

Biological impacted soils associated with disposal of poultry carcasses and general poultry operations may not have had sufficient oxygen and time to degrade. Treatment of these aspects may be achievable through excavation, drying and aeration to promote destruction of biological residues. Amendment may be required to assist, and subject to validation the material could then be reused within topsoil. Onsite treatment of biological impacted soils is a possible option.

3.9.1.3 Waste Material in fill on ground (aesthetic)

The waste materials, including building rubble and poultry carcasses, in and on soils poses an aesthetic issue that cannot be treated onsite. Screening may assist to segregate waste materials for preferred management (option 3, section 3.9.3).

3.9.2 Option 2

Offsite treatment of the soil so that the contaminants are either destroyed or the associated hazards are reduced to an acceptable level, after which the soil is returned to the site.

3.9.2.1 ACM in stockpiles/ surface spoils/ fill

There are no known licensed offsite treatment facilities to treat asbestos impacted soils. This option is not appropriate.

3.9.2.2 Biological & Associated Malodourous Soils

This option is technically feasible, however, it involves duplication of transport and material handling costs; involved in removing the material to an appropriately licensed offsite treatment facility, assuming a facility licenses to treat this type of material can be identified. This option is considered not to be cost effective or sustainable, and offsite treatment facilities may not be licensed to treat these specific impacts.

3.9.2.3 Waste Material in fill on ground (aesthetic)

The waste material poses an aesthetic issue that cannot be treated and returned to the site. This is not a suitable option for remediation.

3.9.3 Option 3

Excavation and offsite removal of the impacted material.

3.9.3.1 ACM in stockpiles/ surface spoils/ fill

As the material is bonded and intact (based upon the information obtained to date), removal of ACM sheet is relatively inexpensive, easy to conduct, and the ACM can then be removed from the site. However, considering that considerable excavation and filling of the site is required for development, as well as encapsulation of the ACM impacted soils is possible, and a more financially viable option than disposing it offsite; this is not the preferred option. This would only be considered further is ACM impacted soil was at volumes in excess of that which could be capped onsite, which is considered unlikely.

3.9.3.2 Biological & Associated Malodourous Soils

Given the ability to treat this material onsite and subsequent possible reuse of treated material, to minimise offsite disposal volumes and associated cost, this option is not preferred. However, should the preferred option (onsite treatment, section 3.9.1.2) for this material be unsuccessful, or the material be considered unsuitable for reuse for reasons other than the identified impacts (e.g. geotechnical unsuitable), offsite disposal may be a suitable alternative.

3.9.3.3 Waste Material in fill on ground (aesthetic)

The waste materials, including building rubble and poultry carcasses, poses an aesthetic issue that cannot be treated and returned to the site. Although, some screening of materials may assist in reducing the volume of material required for disposal. Some materials may also be able to be recycled, which is considered within this 'disposal' option. As such, this option is preferred.

3.9.4 Option 4

Consolidation and isolation of the soil by onsite containment within a properly designed barrier with ongoing management

3.9.4.1 ACM in stockpiles/ surface spoils/ fill

Containment of ACM impacted materials is the preferred option given the potential for considerable ACM impacted soil volumes being generated, and the development requiring considerable cut and fill to achieve the design level. It is important to note that, remediation via containment will place restrictions on the proposed redevelopment of the site (i.e. a Site Management Plan, including capping requirements), as well as a legal requirement for ongoing management placed on the ultimate custodian of the land where material is contained.

3.9.4.2 Biological & Associated Malodourous Soils

Given the ability to treat this material onsite and subsequent reuse of treated material, to contain this material onsite (without any treatment) is not preferred.

3.9.4.3 Waste Material in fill on ground (aesthetic)

As some of these materials may be able to be removed for recycling, and containment may not be feasible for materials that are not able to be compacted without any segregation/ treatment is not the preferred option.

3.10 Capital Investment Value

The estimated Capital Investment Value (CIV) for the Project is approximately \$105 million (Appendix O).

Appendix I

Fauna Results (MJD Environmental 2017,18 & 21)

Fauna List	
Mammals	
Acrobates pygmaeus	Feathertail Glider
Antechinus stuartii	Brown Antechinus
Astronomus australis	Western White-stripped Free- tailed Bat
Bos tarus*	Cattle
Chalinolobus dwyeri	Large-ear Pied Bat (V)
Chalinolobus gouldii	Gould's Wattled Bat
Chalinolobus morio	Chocolate Wattled Bat
Macropus giganteus	Eastern Grey Kanagaroo
Macropus rufogriseus	Red-necked Wallaby
Miniopterus australis	Little Bent-wing Bat (V)
Miniopterus schreibersii oceanensis	Eastern Bent-winged Bat (V)
Mormopterus norfolkensis	Eastern Coastal Free-tailed Bat (V)
Mormopterus ridei	Ride's Free-tailed Bat
Nyctophilus gouldii	Gould's Long Eared Bat
Oryctolagus cuniculus *	European Rabbit
Peremeles nasuta	Long-nosed Bandicoot
Petaurus breviceps	Sugar Glider
Pseudocneirus peregrinus	Ringtail Possum
Pseudocneirus peregrinus Pteropus poliocephalus	Ringtail Possum Grey-headed Flying-fox (V, V)
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus*	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat Yellow-bellied Sheath-tailed Bat (V)
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthonsis murine	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat Yellow-bellied Sheath-tailed Bat (V) Common Duppart
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulnecula	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat Yellow-bellied Sheath-tailed Bat (V) Common Dunnart Common Brushtail Possum
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus vulturnus	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat Yellow-bellied Sheath-tailed Bat (V) Common Dunnart Common Brushtail Possum Little Forest Bat
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus vulturnus Vespadelus pumilus	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat Yellow-bellied Sheath-tailed Bat (V) Common Dunnart Common Brushtail Possum Little Forest Bat Eastern Forest Bat
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus pumilus Vulpes vulpes*	Ringtail PossumGrey-headed Flying-fox (V,V)Bush RatBlack RatEastern Horseshoe BatYellow-bellied Sheath-tailedBat (V)Common DunnartCommon Brushtail PossumLittle Forest BatEastern Forest BatRed FoxRed Fox
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus vulturnus Vespadelus pumilus Vulpes vulpes*	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat Yellow-bellied Sheath-tailed Bat (V) Common Dunnart Common Brushtail Possum Little Forest Bat Eastern Forest Bat
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus pumilus Vulpes vulpes* Birds Acanthiza pusilla	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat Yellow-bellied Sheath-tailed Bat (V) Common Dunnart Common Brushtail Possum Little Forest Bat Red Fox Brown Thornbill
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus vulturnus Vespadelus pumilus Vulpes vulpes* Birds Acanthiza pusilla Acanthorhynchus tenuirostris	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat Yellow-bellied Sheath-tailed Bat (V) Common Dunnart Common Brushtail Possum Little Forest Bat Eastern Forest Bat Red Fox Brown Thornbill Eastern Spine Bill
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus pumilus Vulpes vulpes* Birds Acanthiza pusilla Acanthorhynchus tenuirostris Aegotheles cristatus	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat Yellow-bellied Sheath-tailed Bat (V) Common Dunnart Common Brushtail Possum Little Forest Bat Eastern Forest Bat Red Fox Brown Thornbill Eastern Spine Bill Australian Owlet-nightjar
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus vulturnus Vespadelus pumilus Vulpes vulpes* Birds Acanthiza pusilla Acanthorhynchus tenuirostris Aegotheles cristatus Anas superciliosa	Ringtail PossumGrey-headed Flying-fox (V,V)Bush RatBlack RatEastern Horseshoe BatYellow-bellied Sheath-tailedBat (V)Common DunnartCommon DunnartCommon Brushtail PossumLittle Forest BatEastern Forest BatRed FoxBrown ThornbillEastern Spine BillAustralian Owlet-nightjarPacific Black DuckPacific Black Duck
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus pumilus Vulpes vulpes* Birds Acanthiza pusilla Acanthorhynchus tenuirostris Aegotheles cristatus Anas superciliosa Cacatua galerita	Ringtail PossumGrey-headed Flying-fox (V, V)Bush RatBlack RatEastern Horseshoe BatYellow-bellied Sheath-tailed Bat (V)Common DunnartCommon DunnartCommon Brushtail PossumLittle Forest BatEastern Forest BatRed FoxBrown ThornbillEastern Spine BillAustralian Owlet-nightjarPacific Black DuckSulphur Crested Cockatoo
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus vulturnus Vespadelus pumilus Vulpes vulpes* Birds Acanthiza pusilla Acanthorhynchus tenuirostris Aegotheles cristatus Anas superciliosa Cacatua galerita Cacatua roseicapilla	Ringtail Possum Grey-headed Flying-fox (V, V) Bush Rat Black Rat Eastern Horseshoe Bat Yellow-bellied Sheath-tailed Bat (V) Common Dunnart Common Brushtail Possum Little Forest Bat Eastern Forest Bat Red Fox Brown Thornbill Eastern Spine Bill Australian Owlet-nightjar Pacific Black Duck Sulphur Crested Cockatoo Galah
Pseudocneirus peregrinus Pteropus poliocephalus Rattus fuscipes Rattus rattus* Rhinolophus megaphyllus Saccolaimus flaviventris Sminthopsis murina Trichosurus vulpecula Vespadelus vulturnus Vespadelus pumilus Vulpes vulpes* Birds Acanthiza pusilla Acanthorhynchus tenuirostris Aegotheles cristatus Anas superciliosa Cacatua galerita Cacomantis flabelliformis	Ringtail PossumGrey-headed Flying-fox (V, V)Bush RatBlack RatEastern Horseshoe BatYellow-bellied Sheath-tailed Bat (V)Common DunnartCommon DunnartCommon Brushtail PossumLittle Forest BatEastern Forest BatRed FoxBrown ThornbillEastern Spine BillAustralian Owlet-nightjarPacific Black DuckSulphur Crested CockatooGalahFantail Cuckoo

BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT: BLACK HILL INDUSTRIAL DEVELOPMENT

Chenonetta jubata	Australian Wood Duck	
Colluricincla harmonica	Grey Shrike-thrush	
Corcorax melanorhamphos	White Winged Cough	
Cormobates leucophaeus	White-throated Treecreeper	
Corocina novaehollandiae	Black-faced Cuckoo-shrike	
Cracticus nigrogularis	Pied Butcher Bird	
Dacelo novaeguineae	Laughing Kookaburra	
Egretta novaehollandiae	White-faced Heron	
Elanus axillaris	Black-shouldered Kite	
Eopsaltria australis	Yellow Eastern Robin	
Fulica atra	Eurasian Coot	
Gymnorhina tibice	Australian Magpie	
Hirundo neoxena	Welcome Swallow	
Lichenostomus chrysops	Yellow Faced Honeyeater	
Malurus cyaneus	Superb Fairy Wren	
Manorina melanocephala	Noisy Miner	
Manorina melanophrys	Bell miner	
Neochmia temporalis	Red Brow Finch	
Ocyphaps lophotes	Crested Pigeon	
Phaps chalcoptera	Common Bronzewing	
Platycerus eximius	Eastern Rosella	
Podargus strigoides	Tawny Frogmouth	
Pomatostomus temporalis temporalis	Grey-crowned Babbler (V)	
Psophodes olivaceus	Eastern Whipbird	
Rhipidura fuliginosa	Grey Fantail	
Sericornis frontalis	White Browed Scrub Wren	
Strepera graculina	Pied Currawong	
Trichoglossus haematodus	Rainbow Lorikeet	
Tyto novaehollandiae	Masked Owl (V)	
Vanellus miles	Masked Lapwing	
Herptofauna		
Crinia signifera	Common Eastern Toadlet	
Limnodynastes peronii	Striped Marsh Frog	
Intellagama lesueurii	Eastern Water Dragon	
Pogona barbata	Bearded Dragon	
Pseudechis porphyriacus	Red-bellied black snake	
Varanus varius	Lace Monitor	

Appendix J

RPS Survey Effort Plan & Threatened Fauna Plan (RPS 2017)

Fauna Survey Effort (RPS)

Fauna Group	Target species	Survey method	Survey effort
Herpetofauna	Hoplocephalus bitorquatus (Pale-headed Snake)	 Herpetofauna surveys targeting areas of appropriate habitat Targeted habitat searches/habitat surveys Opportunistic surveys 	 Inspecting rock crevices and overhangs Raking leaf litter and turning logs, rocks and other debris
	Phascogale	 Ground trapping using Elliot A, Elliot B and cage traps. Elliot traps baited with a mixture of rolled oats, peanut butter and honey. Cage traps baited with chicken necks. Traps checked within 2 hours of sunrise each morning and captures then identified and released. Traps were rebaited where necessary Selected locations of traplines were based on stratification units as well as presence of understorey vegetation providing terrestrial habitat. 	 Six trapping transects were undertaken within the study area containing 25 Elliot A, 25 Elliot B and six cage traps per line. Total of 450 Elliot A trap nights, 450 Elliot B trap nights and 108 cage trap nights
Terrestrial	<i>tapoatafa (</i> Common Planigale) <i>Planigale maculata</i> (Brush-tailed Phascogale)	 Hair Tubes using Fauna-tech Hair Tubes Hair tubes were baited with rolled oat, peanut butter and honey. Hair samples sent to Barbara Triggs at 'Dead Finish' for analysis 	 10 hair tubes per trapping transects (three), resulting in 180 terrestrial trap nights.
		Planigale maculata (Brush-tailed Phascogale)	 Spotlighting 75-Watt hand-held spotlight and head torch whilst driving and walking over the study area. Areas of dense bush were targeted, as well as tracks entering and entering the study area.
		 Infrared Camera Surveys Cameras were mounted in appropriate habitat within study area, designed to take photographs when triggered by motion Cameras were used to detect both diurnal and nocturnal faunal movement 	 Two Reconyx infrared motion cameras were utilised during field surveys A total of six camera nights were undertaken.
Arboreal	<i>Petaurus norfolcensis</i> (Squirrel Glider)	 Arboreal Trapping using mounted Elliot B size Traps Traps were baited with a mixture of rolled oats, peanut butter and honey. Tree trunks were sprayed liberally with a brown sugar and water mix late in the afternoon. Traps were checked early each morning. 	 Six trapping transects with six Elliot Size B arboreal traps. 108 arboreal trap nights over three days within the study area.

Fauna Gro <u>up</u>	Target species	Survey method	Survey effort
		 Hair Tubes using Fauna-tech Hair Tubes Hair tubes were baited with rolled oat, peanut butter and honey. Hair samples sent to Barbara Triggs at 'Dead Finish' for analysis 	 10 hair tubes per trapping transects (three), resulting in 180 terrestrial trap nights.
		 Spotlighting 75-Watt hand-held spotlight and head torch whilst driving and walking over the study area. Areas of dense bush were targeted, as well as tracks entering and entering the study area. 	 A total of 24 person hours of spotlighting was conducted over 3 nights.
		 Infrared Camera Surveys Cameras were mounted in appropriate habitat within study area, designed to take photographs when triggered by motion Cameras were used to detect both diurnal and nocturnal faunal movement 	 Two Reconyx infrared motion cameras were utilised during field surveys A total of six camera nights were undertaken.
		 Call back for aural recognition of threatened arboreal mammals Pre-recorded calls of mammals with the potential to occur within the study area were broadcast to elicit vocal responses or to attract nocturnal fauna to the playback site. Calls were broadcast through an amplification system (loud hailer) designed to project the sound for at least 1 km under still night conditions 	 The call of each species was broadcast for at least five minutes, followed by five minutes of listening, the area was then spotlighted on foot.
Diurnal Avifauna	Species Credit- Avifauna	 Systematic diurnal census and opportunistic observations Via direct visual observation or by recognition of calls or distinctive features such as nests, feathers and owl regurgitation pellets Targeted surveys for nectar dependant species were performed during the Spotted Gum (<i>Corymbia maculata</i>) flowering period (May to October 2017) to specifically target the Regent Honeyeater and Swift Parrot. Conditions suitable for performing targeted surveys for the Regent Honeyeater were examined on 10 separate days in this period. Conditions observed during the targeted surveys were typified by spot flowering by Spotted Gum. 	- Opportunistically and during field work

Fauna Group	Target species	Survey method	Survey effort
Nocturnal Avifauna (Owls)	Ninox connivens (Barking Owl) Ninox strenua (Powerful Owl) Tyto novaehollandiae (Masked Owl)	 Call back for aural recognition of threatened owls Pre-recorded calls of owls with the potential to occur within the study area were broadcast to elicit vocal responses or to attract nocturnal fauna to the playback site. Calls were broadcast through an amplification system (loud hailer) designed to project the sound for at least 1 km under still night conditions 	 The call of each species was broadcast for at least five minutes, followed by five minutes of listening, the area was then spotlighted on foot. Opportunistically and during field work
Micro-	Mustic macronus	 Anabat II Detector and CF ZCAIM units Microbat echolocation calls were recorded for the entire night (from 6pm to 6am) Bat call analysis was undertaken by Anna McConville who is experienced in the analysis of bat echolocation calls. 	 Each survey study area had three consecutive nights of sampling, with emphasis placed on those areas deemed likely to provide potential foraging and flyway sites for microbats.
Chiropteran Bats	(Southern Myotis)	 Harp Traps Designed to catch microbats, allowing for visual identification. Any microbats caught were identified early the following morning and kept in small cloth bag which was kept in a cool dark environment until they could be released at nightfall at the study area of capture. 	- Utilised at 5 trap line locations

Appendix K

Anabat Report (EchoEcology)

Bat Call Identification

Black Hill, NSW

Prepared for MJD Environmental Pty Ltd 2/235 Maitland Rd, Mayfield, NSW 2998

Job Reference BC_MJD20 – March 2019

Echo Ecology and Surveying • PO Box 4132 Crescent Head Ecology - 0423 801 779 • Surveying - 0418 604 460 • E: info@echoecology.com.au • W: echoecology.com.au

Bat Call Analysis Black Hill, NSW

This report has been prepared to document the analysis of digital ultrasonic bat echolocation calls received from a third party. The data was not collected by the author and as such no responsibility is taken for the quality of data collection or for the suitability of its subsequent use.

This report was authored by

filler.

Dr Anna McConville PhD, B.Env.Sc.

Contents

1.0	Intro	oduction	1
2.0	Meth	hods	1
	2.1	Characteristics Used to Differentiate Species	2
3.0	Res	sults	3
4.0	Sam	nple Calls	13
5.0	Refe	erences	16

List of Tables

Table 3-1: Results of bat call analysis (number of passes per site per night)......5

List of Figures

Figure 4-1: Austronomus australis definite call1	3
Figure 4-2: <i>Chalinolobus dwyeri</i> definite call1	3
Figure 4-3: <i>Chalinolobus gouldii</i> definite call1	3
Figure 4-4: <i>Chalinolobus morio</i> definite call1	4
Figure 4-5: <i>Miniopterus australis</i> definite call1	4
Figure 4-6: <i>Miniopterus orianae oceanensi</i> s probable call1	4
Figure 4-7: <i>Mormopterus norfolkensis</i> definite call1	4
Figure 4-8: <i>Mormopterus ridei</i> definite call1	5
Figure 4-9: <i>Rhinolophus megaphyllus</i> definite call1	5
Figure 4-10: Saccolaimus flaviventris definite call1	5
Figure 4-11: Vespadelus pumilus definite call1	5

1.0 INTRODUCTION

This report has been commissioned by MJD Environmental to analyse bat echolocation call data (Anabat, Titley Electronics) collected from Black Hill, NSW. Data was provided electronically to the author. This report documents the methods involved in analysing bat call data and the results obtained only.

2.0 METHODS

The identification of bat echolocation calls recorded during surveys was undertaken using AnalookW (Chris Corben, Version 4.4a) software. The calls were recorded using Data Division Ratio 8. The identification of calls was undertaken with reference to Pennay et al. (2004) and through the comparison of recorded reference calls from the Sydney Basin. Reference calls were obtained from the NSW database and from the authors personal collection.

Each call sequence ('pass') was assigned to one of five categories, according to the confidence with which an identification could be made, being:

- Definite Pass identified to species level and could not be confused with another species
- Probable Pass identified to species level and there is a low chance of confusion with another species
- Possible Pass identified to species level but short duration or poor quality of the pass increases the chance of confusion with another species
- Species group Pass could not be identified to species level and could belong to one of two or more species. Occurs more frequently when passes are short or of poor quality
- Unknown Either background 'noise' files or passes by bats which are too short and/or of poor quality to confidently identify.

Call sequences that were less than three pulses in length were not analysed and were assigned to 'Unknown' and only search phase calls were analysed. Furthermore, some species are difficult to differentiate using bat call analysis due to overlapping call frequencies and similar shape of plotted calls and in these cases calls were assigned to species groups.

The total number of passes (call sequences) per unit per night was tallied to give an index of activity.

It should be noted that the activity levels recorded at different sites may not be readily able to be compared. Activity levels should not be compared among species as different species have different detectability due to factors such as call loudness, foraging strategy and call identifying features. Activity comparisons among sites are dependent on many variables which need to be carefully controlled during data collection and statistically analysed. Influential variables include wind, rain, temperature, duration of recording, season, detector and microphone sensitivity, detector placement, weather protection devices etc.

Nomenclature follows the Australian Chiroptera taxonomic list described by Reardon et al. (2015).

2.1 Characteristics Used to Differentiate Species

Miniopterus australis was differentiated from *Vespadelus pumilus*, by characteristic frequency or the presence of a down-sweeping tail on pulses. Call sequences which had a majority of pulses containing an up-sweeping tail were assigned to *Vespadelus pumilus*.

Chalinolobus morio calls were differentiated from those of *Vespadelus* sp. by the presence of a down-sweeping tail on the majority of pulses. We do not confidently identify *Vespadelus troughtoni* from bat calls in this region as it overlaps in frequency with both *Vespadelus pumilus* and *Vespadelus vulturnus* and we find it difficult to distinguish based on call characteristics.

Calls from *Miniopterus orianae oceanensis* were differentiated from *Vespadelus* spp. by a combination of uneven consecutive pulses and the presence of down-sweeping tails.

Calls from *Mormopterus* spp. were differentiated by the presence of mainly flat pulses. *Mormopterus norfolkensis* was differentiated from *Mormopterus ridei* in long call sequences where pulses alternated, often with a downward sloping tail.

Chalinolobus gouldii was differentiated from other species by the presence of curved, alternating call pulses.

Scotorepens orion, Scoteanax rueppellii and Falsistrellus tasmaniensis were unable to be differentiated from one another. Falsistrellus tasmaniensis is most frequently recorded from more elevated locations in the region and so its occurrence within the study area is unlikely. However, some records exist from coastal lowlands and so we have included it in our species groups as a precautionary measure.

Myotis macropus, Nyctophilus geoffroyi and Nyctophilus gouldi were unable to be differentiated.

Chalinolobus dwyeri, Rhinolophus megaphyllus, Saccolaimus flaviventris and *Austronomus australis* were differentiated from other bat species on the basis of characteristic frequency.

3.0 RESULTS

A total of 4,237 call sequences were recorded, of which 3,281 call sequences were able to be analysed (ie were not 'noise' files or bat calls of short length). Of the bat calls, 997 call sequences (30 %) were able to be confidently identified (those classified as either definite or probable identifications) to species level (Table 3-1). Species recorded confidently within the site include:

- Austronomus australis
- Chalinolobus dwyeri
- Chalinolobus gouldii
- Chalinolobus morio
- Miniopterus australis
- Miniopterus orianae oceanensis
- Mormopterus norfolkensis
- Mormopterus ridei
- Rhinolophus megaphyllus
- Saccolaimus flaviventris
- Vespadelus pumilus

(White-striped Free-tailed Bat)
(Large-eared Pied Bat)
(Gould's Wattled Bat)
(Chocolate Wattled Bat)
(Little Bent-winged Bat)
(Eastern Bent-winged Bat)
(Eastern coastal Free-tailed Bat)
(Ride's Free-tailed Bat)
(Eastern Horseshoe Bat)
(Yellow-bellied Sheath-tailed Bat)
(Eastern Forest Bat)

Additionally, the following bat species potentially occurred within the site, but could not be confidently identified (those calls classified as possible or as a species group):

- Falsistrellus tasmaniensis
- Myotis macropus
- Nyctophilus geoffroyi
- Nyctophilus gouldi
- Scoteanax rueppellii
- Scotorepens orion
- Vespadelus darlingtoni
- Vespadelus regulus
- Vespadelus troughtoni
- Vespadelus vulturnus

(Eastern Falsistrelle) (Large-footed Myotis) (Lesser long-eared bat) (Gould's long-eared bat) (Greater Broad-nosed Bat) (Eastern Broad-nosed Bat) (Large Forest Bat) (Southern Forest Bat) (Eastern cave bat) (Little Forest Bat)

It should be noted that additional bat species may be present within the site but were not recorded by the detectors (or are difficult to identify by bat call) and habitat assessment

should be used in conjunction with these results to determine the likelihood of occurrence of other bat species.

Table 3-1 below summarises the results of the bat call analysis.

Table 3-1: Results of bat call analysis (number of passes per site per night)

IDENTIFICATION	AB1 28/02/2019	AB1 1/03/2019	AB1 2/03/2019	AB1 3/03/2019	AB1 4/03/2019	AB1 5/03/2019	AB1 6/03/2019	AB1 7/03/2019	AB1 8/03/2019
DEFINITE									
Austronomus australis	6	8	10	6	14	10	7	2	11
Chalinolobus dwyeri	-	-	-	-	-	-	-	-	-
Chalinolobus gouldii	11	24	15	32	64	52	40	8	11
Chalinolobus morio	1	1	1	1	3	2	23	11	2
Miniopterus australis	3	7	5	9	4	11	13	11	2
Mormopterus norfolkensis	4	8	4	-	3	2	1	6	2
Mormopterus ridei	2	3	2	3	7	3	1	11	-
Rhinolophus megaphyllus	2	1	3	-	-	1	2	-	-
Saccolaimus flaviventris	-	4	2	3	-	12	-	2	2
Vespadelus pumilus	-	-	-	2	2	1	-	-	6
PROBABLE									
Austronomus australis	2	2	3	1	3	-	-	-	-

IDENTIFICATION	AB1 28/02/2019	AB1 1/03/2019	AB1 2/03/2019	AB1 3/03/2019	AB1 4/03/2019	AB1 5/03/2019	AB1 6/03/2019	AB1 7/03/2019	AB1 8/03/2019
Chalinolobus gouldii	7	20	8	14	16	38	14	8	20
Chalinolobus morio	3	-	1	-	1	2	8	-	-
Miniopterus australis	-	1	2	-	3	2	3	1	-
Miniopterus orianae oceanensis	-	-	-	-	1	-	-	-	1
Mormopterus norfolkensis	3	4	5	-	5	1	-	8	2
Mormopterus ridei	2	4	5	9	6	1	-	17	2
Saccolaimus flaviventris	-	3	-	-	-	3	-	-	-
Vespadelus pumilus	-	-	3	4	2	4	-	-	1
POSSIBLE									
Austronomus australis	-	-	-	-	-	-	-	-	-
Chalinolobus gouldii	23	26	32	26	26	39	15	5	45
Chalinolobus morio	-	-	-	-	-	-	-	1	-
Miniopterus australis	-	-	-	-	-	-	2	1	-
Mormopterus norfolkensis	-	-	-	2	1	-	1	-	-

IDENTIFICATION	AB1 28/02/2019	AB1 1/03/2019	AB1 2/03/2019	AB1 3/03/2019	AB1 4/03/2019	AB1 5/03/2019	AB1 6/03/2019	AB1 7/03/2019	AB1 8/03/2019
Mormopterus ridei	-	-	-	1	-	1	-	1	1
Saccolaimus flaviventris	-	-	-	2	-	1	-	-	-
Vespadelus vulturnus	1	-	-	-	-	-	-	-	-
SPECIES GROUPS									
Chalinolobus gouldii/Mormopterus norfolkensis/Mormopterus ridei	11	7	11	17	9	13	1	5	12
Chalinolobus gouldii / Mormopterus ridei	55	25	18	16	10	8	14	4	29
Chalinolobus gouldii/Scoteanax rueppellii	6	24	9	12	8	14	2	-	-
Chalinolobus morio / Miniopterus orianae oceanensis / Vespadelus vulturnus	9	-	-	-	-	-	-	-	-
Chalinolobus morio / Vespadelus pumilus / Vespadelus vulturnus / Vespadelus troughtoni	34	52	22	20	25	43	118	101	25
Chalinolobus morio / Vespadelus vulturnus	-	1	3	-	-	5	-	-	-
Falsistrellus tasmaniensis / Scotorepens orion	1	3	-	-	-	1	-	-	-
Falsistrellus tasmaniensis / Scotorepens orion / Scoteanax rueppellii	3	3	2	6	5	7	2	-	1
Miniopterus australis / Vespadelus pumilus	30	24	40	49	18	54	22	25	30
Miniopterus orianae oceanensis / Vespadelus darlingtoni / Vespadelus regulus	4	1	10	8	8	7	8	2	3

Bat Call Analysis Black Hill, NSW

IDENTIFICATION	AB1 28/02/2019	AB1 1/03/2019	AB1 2/03/2019	AB1 3/03/2019	AB1 4/03/2019	AB1 5/03/2019	AB1 6/03/2019	AB1 7/03/2019	AB1 8/03/2019
Miniopterus orianae oceanensis / Vespadelus vulturnus	-	1	-	-	-	-	-	-	-
Mormopterus norfolkensis / Mormopterus ridei	20	19	48	32	40	6	11	35	18
Myotis macropus/Nyctophilus geoffroyi/Nyctophilus gouldi	2	-	1	-	1	1	3	1	-
Vespadelus pumilus / Vespadelus vulturnus / Vespadelus troughtoni	2	4	1	11	1	2	2	20	1
UNKNOWN									
'Noise' files	10	19	9	11	16	26	3	3	26
Social call	-	6	2	6	2	-	-	-	1
Unknown	44	73	65	71	64	51	55	29	62
TOTAL	301	378	342	374	368	424	371	318	316

IDENTIFICATION	AB2 28/02/2019	AB2 1/03/2019	AB2 2/03/2019	AB2 3/03/2019	AB2 4/03/2019	AB2 5/03/2019	AB2 6/03/2019	AB2 7/03/2019	AB2 8/03/2019
DEFINITE									
Austronomus australis	1	1	-	3	5	-	3	-	2
Chalinolobus dwyeri	-	1	1	-	-	-	-	-	-
Chalinolobus gouldii	-	2	-	1	2	3	1	-	2
Chalinolobus morio	-	1	-	-	-	1	-	-	-
Miniopterus australis	-	-	1	2	2	3	4	5	-
Mormopterus norfolkensis	1	-	-	-	-	-	1	-	-
Mormopterus ridei	1	3	-	3	3	-	1	2	-
Rhinolophus megaphyllus	3	8	2	5	7	6	8	5	5
Saccolaimus flaviventris	-	1	-	-	-	3	2	-	3
Vespadelus pumilus	-	-	-	-	-	-	-	-	-
PROBABLE									
Austronomus australis	-	-	-	-	-	-	-	-	-
Chalinolobus gouldii	1	3	-	1	-	1	1	-	-

IDENTIFICATION	AB2 28/02/2019	AB2 1/03/2019	AB2 2/03/2019	AB2 3/03/2019	AB2 4/03/2019	AB2 5/03/2019	AB2 6/03/2019	AB2 7/03/2019	AB2 8/03/2019
Chalinolobus morio	-	-	-	2	-	3	-	-	1
Miniopterus australis	1	2	-	3	-	-	2	-	2
<i>Miniopterus orianae oceanensis</i>	-	-	-	-	-	-	-	-	-
Mormopterus norfolkensis	6	-	-	1	-	-	1	2	-
Mormopterus ridei	4	-	1	1	1	1	2	6	-
Saccolaimus flaviventris	-	1	-	-	-	-	-	-	-
Vespadelus pumilus	-	-	-	-	-	-	-	-	-
POSSIBLE									
Austronomus australis	-	-	-	-	-	-	-	-	1
Chalinolobus gouldii	1	2	3	3	3	-	-	-	1
Chalinolobus morio	-	-	-	1	-	-	-	-	-
Miniopterus australis	-	-	-	-	-	-	-	-	-
Mormopterus norfolkensis	-	-	-	-	-	-	-	-	-
Mormopterus ridei	-	-	-	-	-	-	-	-	-

IDENTIFICATION	AB2 28/02/2019	AB2 1/03/2019	AB2 2/03/2019	AB2 3/03/2019	AB2 4/03/2019	AB2 5/03/2019	AB2 6/03/2019	AB2 7/03/2019	AB2 8/03/2019
Saccolaimus flaviventris	-	-	-	-	-	-	-	-	-
Vespadelus vulturnus	-	-	-	-	-	-	-	-	-
SPECIES GROUPS									
Chalinolobus gouldii / Morm opterus norfolkensis / Morm opterus ridei	8	6	4	12	17	24	13	6	7
Chalinolobus gouldii / Morm opterus ridei	8	13	7	9	11	11	7	7	9
Chalinolobus gouldii/Scoteanax rueppellii	5	3	7	3	11	7	9	1	12
Chalinolobus morio / Miniopterus orianae oceanensis / Vespadelus vulturnus	-	-	-	-	-	-	-	-	-
Chalinolobus morio / Vespadelus pumilus / Vespadelus vulturnus / Vespadelus troughtoni	2	8	4	9	10	10	22	3	18
Chalinolobus morio / Vespadelus vulturnus	-	-	-	-	-	-	-	-	-
Falsistrellus tasmaniensis / Scotorepens orion	1	-	2	1	1	-	-	-	-
Falsistrellus tasmaniensis / Scotorepens orion / Scoteanax rueppellii	4	3	2	8	14	17	6	2	6
Miniopterus australis / Vespadelus pumilus	2	1	4	-	4	4	6	4	8
Miniopterus orianae oceanensis / Vespadelus darlingtoni / Vespadelus regulus	2	-	5	2	2	4	40	3	8
Miniopterus orianae oceanensis / Vespadelus vulturnus	-	-	-	-	-	-	-	-	-

Bat Call Analysis Black Hill, NSW

IDENTIFICATION	AB2 28/02/2019	AB2 1/03/2019	AB2 2/03/2019	AB2 3/03/2019	AB2 4/03/2019	AB2 5/03/2019	AB2 6/03/2019	AB2 7/03/2019	AB2 8/03/2019
Mormopterus norfolkensis/Mormopterus ridei	8	5	5	8	9	6	7	8	4
Myotis macropus/Nyctophilus geoffroyi/Nyctophilus gouldi	-	3	1	-	-	1	2	-	1
Vespadelus pumilus / Vespadelus vulturnus / Vespadelus troughtoni		-	-	-	-	-	1	-	-
UNKNOWN									
'Noise' files	1	-	1	-	-	1	-	-	1
Social call	-	-	-	-	-	-	-	-	-
Unknown	39	25	40	23	38	35	46	17	35
TOTAL	99	92	90	101	140	141	185	71	126

4.0 SAMPLE CALLS

A sample of the calls actually identified from the site for each species is given below.

Figure 4-1: Austronomus australis definite call

Figure 4-2: Chalinolobus dwyeri definite call

Figure 4-3: Chalinolobus gouldii definite call

		Page .	Valia (della)
774		7 250	6137 -4c 9185 5% 14 17
		Syst Syst Syst	62.54 (d) 51.77 (d) 51.07 (d)
		Wite BC	21 M 10
And Prest Art at prest	a the first of the	These 2	122 44 122 47 126 5
452		18	-4000 078 200 02 004 1
10			
30x			
152		_	
202. 172.			
10			
50 	- 10	_	
"1 22 0.02 2 24 0.05 2 05 0.15	aliz elle alie elle size size alie inter size alie size alie size alie size alie size alie alie alie alie	6 Soard	Shows The Time

Figure 4-4: Chalinolobus morio definite call

Figure 4-5: Miniopterus australis definite call

Figure 4-6: Miniopterus orianae oceanensis probable call

Figure 4-7: Mormopterus norfolkensis definite call

Figure 4-8: Mormopterus ridei definite call

Figure 4-9: Rhinolophus megaphyllus definite call

Figure 4-10: Saccolaimus flaviventris definite call

Figure 4-11: Vespadelus pumilus definite call

5.0 **REFERENCES**

Adams, M. D., Law, B.S., French, K.O. (2009). "Vegetation structure influences the vertical stratification of open- and edge-space aerial-foraging bats in harvested forests." Forest Ecology and Management 258(9): 2090-2100.

Adams, M. D., Law, B.S., French, K.O. (2010). Reliable automation of bat call identification for eastern New South Wales, Australia, using classification trees and AnaScheme software. *Acta Chiropterologica* 12(1): 231-245.

Australasian Bat Society Incorporated (undated) *Standards for reporting bat detector surveys*, http://batcall.csu.edu.au/abs/issues/ABS Anabat survey standards.pdf

Churchill, S. (2008). Australian Bats. Second Edition Allen & Unwin; Crows Nest, NSW.

Law, B.S., Reinhold, L. and Pennay, M. (2002). Geographic variation in the echolocation calls of Vespadelus spp. (Vespertilionidae) from New South Wale and Queensland, Australia. *Acta Chiropterologica* 4: 201-215.

Pennay, M., Law, B. and Reinhold, L. (2004). *Bat calls of New South Wales: Region based guide to the echolocation calls of Microchiropteran bats*. NSW Department of Environment and Conservation, Hurstville.

Reardon, T., Armstrong, K., Jackson, S. (2015). *A current taxonomic list of Australian Chiroptera*, Australasian Bat Society, Inc. Version 2015-05-15.

Reinhold, L., Law, B., Ford, G. and Pennay, M. (2001a). *Key to the bat calls of south-east Queensland and north-east New South Wales*. Queensland Department of Natural Resources and Mines, State Forests of New South Wales, University of Southern Queensland, and New South Wales National Parks and Wildlife Service, Australia.

Reinhold, L., Herr, A., Lumsden, L., Reardon, T., Corben, C., Law, B., Prevett, P., Ford, G., Conole, L., Kutt, A., Milne, D. and Hoye, G. (2001b). Geographic variation in the echolocation calls of Gould's wattled bat *Chalinolobus gouldii*. *Australian Zoologist* 31: 618-624.

Van Dyck, S. and Strahan, R. (Eds.) (2008). *The Mammals of Australia: Third Edition*. New Holland; Sydney.